Acuña, G., & Curilem, M. (2009). Comparison of Neural Networks and Support Vector Machine Dynamic Models for State Estimation in Semiautogenous Mills. Lecture Notes in Computer Science, 478-487. doi:10.1007/978-3-642-05258-3_42
Canu, S., Grandvalet, Y., Guigue, V., Rakotomamonjy, A, 2005, SVM and Kernel Methods Matlab Toolbox. Perception Systèmes et Information, INSA de Rouen, Rouen, France.
Curilem, M., Acuña, G., Cubillos, F. and Vhymeister, E, 2011, Neural networks and support vector machine models applied to energy consumption optimization in semiautogenous grinding, Chemical Engineering Transactions, 25: 761-766, Dot: 10 3303/CET1125127.
[+]
Acuña, G., & Curilem, M. (2009). Comparison of Neural Networks and Support Vector Machine Dynamic Models for State Estimation in Semiautogenous Mills. Lecture Notes in Computer Science, 478-487. doi:10.1007/978-3-642-05258-3_42
Canu, S., Grandvalet, Y., Guigue, V., Rakotomamonjy, A, 2005, SVM and Kernel Methods Matlab Toolbox. Perception Systèmes et Information, INSA de Rouen, Rouen, France.
Curilem, M., Acuña, G., Cubillos, F. and Vhymeister, E, 2011, Neural networks and support vector machine models applied to energy consumption optimization in semiautogenous grinding, Chemical Engineering Transactions, 25: 761-766, Dot: 10 3303/CET1125127.
Gao, Y., & Er, M. J. (2005). NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches. Fuzzy Sets and Systems, 150(2), 331-350. doi:10.1016/j.fss.2004.09.015
Gonzaga, J. C. B., Meleiro, L. A. ., Kiang, C., & Maciel Filho, R. (2009). ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Computers & Chemical Engineering, 33(1), 43-49. doi:10.1016/j.compchemeng.2008.05.019
Guo, G., Wu, X., Zhuo, S., Xu, P., Cao, B. 2008, Prediction state of charge of Ni-MH battery pack using support vector machines for hybrid electric vehicles, IEEE Vehicle Power and Propulsion Conference (VPPC), September3-5, 2008, Harbin, China.
HORNSTEIN, A., & PARLITZ, U. (2004). BIAS REDUCTION FOR TIME SERIES MODELS BASED ON SUPPORT VECTOR REGRESSION. International Journal of Bifurcation and Chaos, 14(06), 1947-1956. doi:10.1142/s0218127404010369
LEONTARITIS, I. J., & BILLINGS, S. A. (1985). Input-output parametric models for non-linear systems Part I: deterministic non-linear systems. International Journal of Control, 41(2), 303-328. doi:10.1080/0020718508961129
Martinez-Ramon, M., Rojo-Alvarez, J. L., Camps-Valls, G., Munoz-Mari, J., Navia-Vazquez, A., Soria-Olivas, E., & Figueiras-Vidal, A. R. (2006). Support Vector Machines for Nonlinear Kernel ARMA System Identification. IEEE Transactions on Neural Networks, 17(6), 1617-1622. doi:10.1109/tnn.2006.879767
Norgaard, M., 2003, The NNSYSID Toolbox, for use with Matlab, http://www.iau.dtu.dk/research/control/nnsysid.html.
Salazar, J. L., Magne, L., Acuña, G., & Cubillos, F. (2009). Dynamic modelling and simulation of semi-autogenous mills. Minerals Engineering, 22(1), 70-77. doi:10.1016/j.mineng.2008.04.009
Sapankevych, N., & Sankar, R. (2009). Time Series Prediction Using Support Vector Machines: A Survey. IEEE Computational Intelligence Magazine, 4(2), 24-38. doi:10.1109/mci.2009.932254
Schölkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New Support Vector Algorithms. Neural Computation, 12(5), 1207-1245. doi:10.1162/089976600300015565
Suárez, A., & Gómez, Z. (2011). Sensor Virtual Entrenado Usando el Concepto de Variables Instrumentales y Aplicado en la Medición de Temperatura en un Convertidor Teniente. Revista iberoamericana de automática e informática industrial, 8(1), 54-63. doi:10.4995/riai.2011.01.08
Suykens, J.A.K., Van Gestel, T, De Brabanter, J., De Moor, B., Vandewalle, J. 2002, Least Squares Support Vector Machines, World Scientific, Singapore.
Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10), 1550-1560. doi:10.1109/5.58337
Yan, W., Shao, H., & Wang, X. (2004). Soft sensing modeling based on support vector machine and Bayesian model selection. Computers & Chemical Engineering, 28(8), 1489-1498. doi:10.1016/j.compchemeng.2003.11.004
[-]