- -

Desarrollo de un Sensor Virtual basado en Modelo NARMAX y Máquina de Vectores de Soporte para Molienda Semiautógena

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Desarrollo de un Sensor Virtual basado en Modelo NARMAX y Máquina de Vectores de Soporte para Molienda Semiautógena

Show full item record

Acuña, G.; Curilem, M.; Cubillos, F. (2014). Desarrollo de un Sensor Virtual basado en Modelo NARMAX y Máquina de Vectores de Soporte para Molienda Semiautógena. Revista Iberoamericana de Automática e Informática industrial. 11(1):109-116. https://doi.org/10.1016/j.riai.2013.09.008

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144196

Files in this item

Item Metadata

Title: Desarrollo de un Sensor Virtual basado en Modelo NARMAX y Máquina de Vectores de Soporte para Molienda Semiautógena
Secondary Title: Development of a Software Sensor based on a NARMAX-Support Vector Machine Model for Semi-Autogenous Grinding
Author: Acuña, Gonzalo Curilem, Millaray Cubillos, Francisco
Issued date:
Abstract:
[EN] State estimation in complex processes such as the semi- autogenous grinding process (SAG) in copper mining is an important and difficult task due to difficulties for real-time and on-line measuring of some relevant ...[+]


[ES] La estimación de estados, en procesos complejos como el proceso de molienda semiautógena (SAG) en la minería del cobre, es una tarea difícil debido a las dificultades para medir directamente ciertas variables relevantes ...[+]
Subjects: Artificial Neural Network , Support Vector Machine , NARX , NARMAX , Grinding Process , Software Sensor , Redes Neuronales Artificiales , Máquinas de Vectores de Soporte , Proceso de Molienda , Sensor Virtual
Copyrigths: Reserva de todos los derechos
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2013.09.008
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.riai.2013.09.008
Project ID:
info:eu-repo/grantAgreement/FONDECYT//1090316/
info:eu-repo/grantAgreement/FONDECYT//1090062/
info:eu-repo/grantAgreement/Usach//06-1219AL/
Thanks:
Se agradece apoyo de Fondecyt 1090316 y 1090062, DICYT-USACH 06-1219AL y a la Dirección de Investigación de la Universidad de La Frontera.
Type: Artículo

References

Acuña, G., & Curilem, M. (2009). Comparison of Neural Networks and Support Vector Machine Dynamic Models for State Estimation in Semiautogenous Mills. Lecture Notes in Computer Science, 478-487. doi:10.1007/978-3-642-05258-3_42

Canu, S., Grandvalet, Y., Guigue, V., Rakotomamonjy, A, 2005, SVM and Kernel Methods Matlab Toolbox. Perception Systèmes et Information, INSA de Rouen, Rouen, France.

Curilem, M., Acuña, G., Cubillos, F. and Vhymeister, E, 2011, Neural networks and support vector machine models applied to energy consumption optimization in semiautogenous grinding, Chemical Engineering Transactions, 25: 761-766, Dot: 10 3303/CET1125127. [+]
Acuña, G., & Curilem, M. (2009). Comparison of Neural Networks and Support Vector Machine Dynamic Models for State Estimation in Semiautogenous Mills. Lecture Notes in Computer Science, 478-487. doi:10.1007/978-3-642-05258-3_42

Canu, S., Grandvalet, Y., Guigue, V., Rakotomamonjy, A, 2005, SVM and Kernel Methods Matlab Toolbox. Perception Systèmes et Information, INSA de Rouen, Rouen, France.

Curilem, M., Acuña, G., Cubillos, F. and Vhymeister, E, 2011, Neural networks and support vector machine models applied to energy consumption optimization in semiautogenous grinding, Chemical Engineering Transactions, 25: 761-766, Dot: 10 3303/CET1125127.

Gao, Y., & Er, M. J. (2005). NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches. Fuzzy Sets and Systems, 150(2), 331-350. doi:10.1016/j.fss.2004.09.015

Gonzaga, J. C. B., Meleiro, L. A. ., Kiang, C., & Maciel Filho, R. (2009). ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Computers & Chemical Engineering, 33(1), 43-49. doi:10.1016/j.compchemeng.2008.05.019

Guo, G., Wu, X., Zhuo, S., Xu, P., Cao, B. 2008, Prediction state of charge of Ni-MH battery pack using support vector machines for hybrid electric vehicles, IEEE Vehicle Power and Propulsion Conference (VPPC), September3-5, 2008, Harbin, China.

HORNSTEIN, A., & PARLITZ, U. (2004). BIAS REDUCTION FOR TIME SERIES MODELS BASED ON SUPPORT VECTOR REGRESSION. International Journal of Bifurcation and Chaos, 14(06), 1947-1956. doi:10.1142/s0218127404010369

LEONTARITIS, I. J., & BILLINGS, S. A. (1985). Input-output parametric models for non-linear systems Part I: deterministic non-linear systems. International Journal of Control, 41(2), 303-328. doi:10.1080/0020718508961129

Martinez-Ramon, M., Rojo-Alvarez, J. L., Camps-Valls, G., Munoz-Mari, J., Navia-Vazquez, A., Soria-Olivas, E., & Figueiras-Vidal, A. R. (2006). Support Vector Machines for Nonlinear Kernel ARMA System Identification. IEEE Transactions on Neural Networks, 17(6), 1617-1622. doi:10.1109/tnn.2006.879767

Norgaard, M., 2003, The NNSYSID Toolbox, for use with Matlab, http://www.iau.dtu.dk/research/control/nnsysid.html.

Salazar, J. L., Magne, L., Acuña, G., & Cubillos, F. (2009). Dynamic modelling and simulation of semi-autogenous mills. Minerals Engineering, 22(1), 70-77. doi:10.1016/j.mineng.2008.04.009

Sapankevych, N., & Sankar, R. (2009). Time Series Prediction Using Support Vector Machines: A Survey. IEEE Computational Intelligence Magazine, 4(2), 24-38. doi:10.1109/mci.2009.932254

Schölkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New Support Vector Algorithms. Neural Computation, 12(5), 1207-1245. doi:10.1162/089976600300015565

Suárez, A., & Gómez, Z. (2011). Sensor Virtual Entrenado Usando el Concepto de Variables Instrumentales y Aplicado en la Medición de Temperatura en un Convertidor Teniente. Revista iberoamericana de automática e informática industrial, 8(1), 54-63. doi:10.4995/riai.2011.01.08

Suykens, J.A.K., Van Gestel, T, De Brabanter, J., De Moor, B., Vandewalle, J. 2002, Least Squares Support Vector Machines, World Scientific, Singapore.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10), 1550-1560. doi:10.1109/5.58337

Yan, W., Shao, H., & Wang, X. (2004). Soft sensing modeling based on support vector machine and Bayesian model selection. Computers & Chemical Engineering, 28(8), 1489-1498. doi:10.1016/j.compchemeng.2003.11.004

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record