Acosta, G., Curti, H., Calvo, O., Rossi, S., 2008. Some issues on the design of a low-cost autonomous underwater vehicle with an intelligent dynamic mission planner for pipeline and cable tracking. In: Inzartsev, A. (Ed.), Un- derwater Vehicles. InTech, Ch. 1, pp. 1-19.
Alvarez, C., 2008. Concepción y desarrollo de un veh́ıculo submarino robótico de estructura paralela de geometŕıa variable. Ph.D. thesis, Univesidad Poli- tecnica de Madrid, Madrid, España.
Álvarez, C., Saltaren, R., Aracil, R., & García, C. (2009). Concepción, Desarrollo y Avances en el Control de Navegación de Robots Submarinos Paralelos: El Robot Remo-I. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(3), 92-100. doi:10.1016/s1697-7912(09)70268-7
[+]
Acosta, G., Curti, H., Calvo, O., Rossi, S., 2008. Some issues on the design of a low-cost autonomous underwater vehicle with an intelligent dynamic mission planner for pipeline and cable tracking. In: Inzartsev, A. (Ed.), Un- derwater Vehicles. InTech, Ch. 1, pp. 1-19.
Alvarez, C., 2008. Concepción y desarrollo de un veh́ıculo submarino robótico de estructura paralela de geometŕıa variable. Ph.D. thesis, Univesidad Poli- tecnica de Madrid, Madrid, España.
Álvarez, C., Saltaren, R., Aracil, R., & García, C. (2009). Concepción, Desarrollo y Avances en el Control de Navegación de Robots Submarinos Paralelos: El Robot Remo-I. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(3), 92-100. doi:10.1016/s1697-7912(09)70268-7
Anderson, J. M. (2002). Maneuvering and Stability Performance of a Robotic Tuna. Integrative and Comparative Biology, 42(1), 118-126. doi:10.1093/icb/42.1.118
Bachmayer, R., Whitcomb, L. L., & Grosenbaugh, M. A. (2000). An accurate four-quadrant nonlinear dynamical model for marine thrusters: theory and experimental validation. IEEE Journal of Oceanic Engineering, 25(1), 146-159. doi:10.1109/48.820747
Bradley, A. M., Feezor, M. D., Singh, H., & Yates Sorrell, F. (2001). Power systems for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 26(4), 526-538. doi:10.1109/48.972089
Caffaz, A., Caiti, A., Casalino, G., & Turetta, A. (2010). The Hybrid Glider/AUV Folaga. IEEE Robotics & Automation Magazine, 17(1), 31-44. doi:10.1109/mra.2010.935791
Cavallo, E., Michelini, R. C., & Filaretov, V. F. (2004). Conceptual Design of an AUV Equipped with a Three Degrees of Freedom Vectored Thruster. Journal of Intelligent and Robotic Systems, 39(4), 365-391. doi:10.1023/b:jint.0000026081.75417.50
Davis, Russ E.; Eriksen, C. C., Jones, C., 2002. Autonomous buoyancy-driven underwater gliders. The Technology and Applications of Autonomous Un- derwater Vehicles. G.Griffiths, ed., London, England.
García, J. M. de la C., Almansa, J. A., & Sierra, J. M. G. (2012). Automática marina: una revisión desde el punto de vista del control. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(3), 205-218. doi:10.1016/j.riai.2012.05.001
DeBitetto, P. A. (1995). Fuzzy logic for depth control of Unmanned Undersea Vehicles. IEEE Journal of Oceanic Engineering, 20(3), 242-248. doi:10.1109/48.393079
De Novi, G., Melchiorri, C., Garcia, J. C., Sanz, P. J., Ridao, P., & Oliver, G. (2010). New approach for a Reconfigurable Autonomous Underwater Vehicle for Intervention. IEEE Aerospace and Electronic Systems Magazine, 25(11), 32-36. doi:10.1109/maes.2010.5638803
Desset, S., Damus, R., Hover, F., Morash, J., Polidoro, V., 2005. Closer to deep underwater science with odyssey iv class hovering autonomous underwater vehicle (hauv). In: IEEE Oceans 2005 - Europe. Vol. 2. pp. 758-762.
Dudek, G., Giguere, P., Prahacs, C., Saunderson, S., Sattar, J., Torres-Mendez, L., … Georgiades, C. (2007). AQUA: An Amphibious Autonomous Robot. Computer, 40(1), 46-53. doi:10.1109/mc.2007.6
Goheen, K. R., & Jefferys, E. R. (1990). Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles. IEEE Journal of Oceanic Engineering, 15(3), 144-151. doi:10.1109/48.107142
Griffiths, G., Ed., Davis, R.E., Eriksen, C.C., Jones, C.P., 2002. Autono- mous buoyancy-driven underwater gliders. In: Technology and Applications of Autonomous Underwater Vehicles. Taylor and Francis, London, England.
Guo, J., Chiu, F.-C., & Huang, C.-C. (2003). Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. Ocean Engineering, 30(16), 2137-2155. doi:10.1016/s0029-8018(03)00048-9
Healey, A. J., & Lienard, D. (1993). Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 18(3), 327-339. doi:10.1109/joe.1993.236372
Marani, G., Choi, S. K., & Yuh, J. (2009). Underwater autonomous manipulation for intervention missions AUVs. Ocean Engineering, 36(1), 15-23. doi:10.1016/j.oceaneng.2008.08.007
Newman, 1977. Marine Hidrodynamics.
Powerflow, 2012. Web page software package. Online:http://www.exa.com.
Prats, M., Ribas, D., Palomeras, N., García, J. C., Nannen, V., Wirth, S., … Ortiz, A. (2011). Reconfigurable AUV for intervention missions: a case study on underwater object recovery. Intelligent Service Robotics, 5(1), 19-31. doi:10.1007/s11370-011-0101-z
Ross, C. T. F. (2006). A conceptual design of an underwater vehicle. Ocean Engineering, 33(16), 2087-2104. doi:10.1016/j.oceaneng.2005.11.005
Rossi, C., Colorado, J., Coral, W., & Barrientos, A. (2011). Bending continuous structures with SMAs: a novel robotic fish design. Bioinspiration & Biomimetics, 6(4), 045005. doi:10.1088/1748-3182/6/4/045005
Saltaren, R., Aracil, R., Alvarez, C., Yime, E., & Sabater, J. M. (2007). Field and service applications - Exploring deep sea by teleoperated robot - An Underwater Parallel Robot with High Navigation Capabilities. IEEE Robotics & Automation Magazine, 14(3), 65-75. doi:10.1109/mra.2007.905502
Seaeye, 2012. Web page Panther-XT. Onli- ne:http://www.seaeye.com/pantherxt.html.
SNAME, 1950. Nomenclature for treating the motion of a submerged body th- rough a fluid. The Society of Naval Architects and Marine Engineers. Tech- nical and Research bulletin No. 1-5.
Control architectures for autonomous underwater vehicles. (1997). IEEE Control Systems, 17(6), 48-64. doi:10.1109/37.642974
Van de Ven, P. W. J., Flanagan, C., & Toal, D. (2005). Neural network control of underwater vehicles. Engineering Applications of Artificial Intelligence, 18(5), 533-547. doi:10.1016/j.engappai.2004.12.004
Yime, E., 2008. Modelo matemático y control vectorial de robots submarinos de geometŕıa variable. Ph.D. thesis, Univesidad Politecnica de Madrid, Madrid, España.
Yoerger, D. R., Cooke, J. G., & Slotine, J.-J. E. (1990). The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE Journal of Oceanic Engineering, 15(3), 167-178. doi:10.1109/48.107145
Yoerger, D., & Slotine, J. (1985). Robust trajectory control of underwater vehicles. IEEE Journal of Oceanic Engineering, 10(4), 462-470. doi:10.1109/joe.1985.1145131
Yuh, J. (1990). A neural net controller for underwater robotic vehicles. IEEE Journal of Oceanic Engineering, 15(3), 161-166. doi:10.1109/48.107144
Learning control for underwater robotic vehicles. (1994). IEEE Control Systems, 14(2), 39-46. doi:10.1109/37.272779
Yuh, J. (2000). Autonomous Robots, 8(1), 7-24. doi:10.1023/a:1008984701078
[-]