- -

Robótica Submarina: Conceptos, Elementos, Modelado y Control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robótica Submarina: Conceptos, Elementos, Modelado y Control

Mostrar el registro completo del ítem

Moreno, HA.; Saltarén, R.; Puglisi, L.; Carrera, I.; Cárdenas, P.; Álvarez, C. (2014). Robótica Submarina: Conceptos, Elementos, Modelado y Control. Revista Iberoamericana de Automática e Informática industrial. 11(1):3-19. https://doi.org/10.1016/j.riai.2013.11.001

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144200

Ficheros en el ítem

Metadatos del ítem

Título: Robótica Submarina: Conceptos, Elementos, Modelado y Control
Otro titulo: Underwater Robotics: Concepts, Elements, Modeling and Control
Autor: Moreno, Héctor A. Saltarén, Roque Puglisi, Lisandro Carrera, Isela Cárdenas, Pedro Álvarez, César
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Underwater robots have considerably changed the exploration of deep sea. Even more, these robots allow performing opera- tions in remote subsea installations. The future of this techno- logy is promising. The purpose ...[+]


[ES] Los robots submarinos han revolucionado la exploración del fondo marino. Por otro lado, estos robots han permitido realizar operaciones en aguas profundas sin la necesidad de enviar un vehhículo tripulado por humanos. ...[+]
Palabras clave: Robots Submarinos , Introducción , Componentes , Modelado , Control , Estado del Arte , Underwater Robotics , Introduction , Components , Modeling , State of the Art
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2013.11.001
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.riai.2013.11.001
Agradecimientos:
Este trabajo fue financiado por el Ministerio de Educación y Ciencia de España. I. Carrera y P. Cárdenas, quieren agradecer a CONACYT-México y Colciencias por sus becas doctorales, respectivamente.
Tipo: Artículo

References

Acosta, G., Curti, H., Calvo, O., Rossi, S., 2008. Some issues on the design of a low-cost autonomous underwater vehicle with an intelligent dynamic mission planner for pipeline and cable tracking. In: Inzartsev, A. (Ed.), Un- derwater Vehicles. InTech, Ch. 1, pp. 1-19.

Alvarez, C., 2008. Concepción y desarrollo de un veh́ıculo submarino robótico de estructura paralela de geometŕıa variable. Ph.D. thesis, Univesidad Poli- tecnica de Madrid, Madrid, España.

Álvarez, C., Saltaren, R., Aracil, R., & García, C. (2009). Concepción, Desarrollo y Avances en el Control de Navegación de Robots Submarinos Paralelos: El Robot Remo-I. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(3), 92-100. doi:10.1016/s1697-7912(09)70268-7 [+]
Acosta, G., Curti, H., Calvo, O., Rossi, S., 2008. Some issues on the design of a low-cost autonomous underwater vehicle with an intelligent dynamic mission planner for pipeline and cable tracking. In: Inzartsev, A. (Ed.), Un- derwater Vehicles. InTech, Ch. 1, pp. 1-19.

Alvarez, C., 2008. Concepción y desarrollo de un veh́ıculo submarino robótico de estructura paralela de geometŕıa variable. Ph.D. thesis, Univesidad Poli- tecnica de Madrid, Madrid, España.

Álvarez, C., Saltaren, R., Aracil, R., & García, C. (2009). Concepción, Desarrollo y Avances en el Control de Navegación de Robots Submarinos Paralelos: El Robot Remo-I. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(3), 92-100. doi:10.1016/s1697-7912(09)70268-7

Anderson, J. M. (2002). Maneuvering and Stability Performance of a Robotic Tuna. Integrative and Comparative Biology, 42(1), 118-126. doi:10.1093/icb/42.1.118

Bachmayer, R., Whitcomb, L. L., & Grosenbaugh, M. A. (2000). An accurate four-quadrant nonlinear dynamical model for marine thrusters: theory and experimental validation. IEEE Journal of Oceanic Engineering, 25(1), 146-159. doi:10.1109/48.820747

Bradley, A. M., Feezor, M. D., Singh, H., & Yates Sorrell, F. (2001). Power systems for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 26(4), 526-538. doi:10.1109/48.972089

Caffaz, A., Caiti, A., Casalino, G., & Turetta, A. (2010). The Hybrid Glider/AUV Folaga. IEEE Robotics & Automation Magazine, 17(1), 31-44. doi:10.1109/mra.2010.935791

Cavallo, E., Michelini, R. C., & Filaretov, V. F. (2004). Conceptual Design of an AUV Equipped with a Three Degrees of Freedom Vectored Thruster. Journal of Intelligent and Robotic Systems, 39(4), 365-391. doi:10.1023/b:jint.0000026081.75417.50

Davis, Russ E.; Eriksen, C. C., Jones, C., 2002. Autonomous buoyancy-driven underwater gliders. The Technology and Applications of Autonomous Un- derwater Vehicles. G.Griffiths, ed., London, England.

García, J. M. de la C., Almansa, J. A., & Sierra, J. M. G. (2012). Automática marina: una revisión desde el punto de vista del control. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(3), 205-218. doi:10.1016/j.riai.2012.05.001

DeBitetto, P. A. (1995). Fuzzy logic for depth control of Unmanned Undersea Vehicles. IEEE Journal of Oceanic Engineering, 20(3), 242-248. doi:10.1109/48.393079

De Novi, G., Melchiorri, C., Garcia, J. C., Sanz, P. J., Ridao, P., & Oliver, G. (2010). New approach for a Reconfigurable Autonomous Underwater Vehicle for Intervention. IEEE Aerospace and Electronic Systems Magazine, 25(11), 32-36. doi:10.1109/maes.2010.5638803

Desset, S., Damus, R., Hover, F., Morash, J., Polidoro, V., 2005. Closer to deep underwater science with odyssey iv class hovering autonomous underwater vehicle (hauv). In: IEEE Oceans 2005 - Europe. Vol. 2. pp. 758-762.

Dudek, G., Giguere, P., Prahacs, C., Saunderson, S., Sattar, J., Torres-Mendez, L., … Georgiades, C. (2007). AQUA: An Amphibious Autonomous Robot. Computer, 40(1), 46-53. doi:10.1109/mc.2007.6

Goheen, K. R., & Jefferys, E. R. (1990). Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles. IEEE Journal of Oceanic Engineering, 15(3), 144-151. doi:10.1109/48.107142

Griffiths, G., Ed., Davis, R.E., Eriksen, C.C., Jones, C.P., 2002. Autono- mous buoyancy-driven underwater gliders. In: Technology and Applications of Autonomous Underwater Vehicles. Taylor and Francis, London, England.

Guo, J., Chiu, F.-C., & Huang, C.-C. (2003). Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. Ocean Engineering, 30(16), 2137-2155. doi:10.1016/s0029-8018(03)00048-9

Healey, A. J., & Lienard, D. (1993). Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 18(3), 327-339. doi:10.1109/joe.1993.236372

Marani, G., Choi, S. K., & Yuh, J. (2009). Underwater autonomous manipulation for intervention missions AUVs. Ocean Engineering, 36(1), 15-23. doi:10.1016/j.oceaneng.2008.08.007

Newman, 1977. Marine Hidrodynamics.

Powerflow, 2012. Web page software package. Online:http://www.exa.com.

Prats, M., Ribas, D., Palomeras, N., García, J. C., Nannen, V., Wirth, S., … Ortiz, A. (2011). Reconfigurable AUV for intervention missions: a case study on underwater object recovery. Intelligent Service Robotics, 5(1), 19-31. doi:10.1007/s11370-011-0101-z

Ross, C. T. F. (2006). A conceptual design of an underwater vehicle. Ocean Engineering, 33(16), 2087-2104. doi:10.1016/j.oceaneng.2005.11.005

Rossi, C., Colorado, J., Coral, W., & Barrientos, A. (2011). Bending continuous structures with SMAs: a novel robotic fish design. Bioinspiration & Biomimetics, 6(4), 045005. doi:10.1088/1748-3182/6/4/045005

Saltaren, R., Aracil, R., Alvarez, C., Yime, E., & Sabater, J. M. (2007). Field and service applications - Exploring deep sea by teleoperated robot - An Underwater Parallel Robot with High Navigation Capabilities. IEEE Robotics & Automation Magazine, 14(3), 65-75. doi:10.1109/mra.2007.905502

Seaeye, 2012. Web page Panther-XT. Onli- ne:http://www.seaeye.com/pantherxt.html.

SNAME, 1950. Nomenclature for treating the motion of a submerged body th- rough a fluid. The Society of Naval Architects and Marine Engineers. Tech- nical and Research bulletin No. 1-5.

Control architectures for autonomous underwater vehicles. (1997). IEEE Control Systems, 17(6), 48-64. doi:10.1109/37.642974

Van de Ven, P. W. J., Flanagan, C., & Toal, D. (2005). Neural network control of underwater vehicles. Engineering Applications of Artificial Intelligence, 18(5), 533-547. doi:10.1016/j.engappai.2004.12.004

Yime, E., 2008. Modelo matemático y control vectorial de robots submarinos de geometŕıa variable. Ph.D. thesis, Univesidad Politecnica de Madrid, Madrid, España.

Yoerger, D. R., Cooke, J. G., & Slotine, J.-J. E. (1990). The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE Journal of Oceanic Engineering, 15(3), 167-178. doi:10.1109/48.107145

Yoerger, D., & Slotine, J. (1985). Robust trajectory control of underwater vehicles. IEEE Journal of Oceanic Engineering, 10(4), 462-470. doi:10.1109/joe.1985.1145131

Yuh, J. (1990). A neural net controller for underwater robotic vehicles. IEEE Journal of Oceanic Engineering, 15(3), 161-166. doi:10.1109/48.107144

Learning control for underwater robotic vehicles. (1994). IEEE Control Systems, 14(2), 39-46. doi:10.1109/37.272779

Yuh, J. (2000). Autonomous Robots, 8(1), 7-24. doi:10.1023/a:1008984701078

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem