- -

Temperature Assessment Of Microwave-Enhanced Heating Processes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Temperature Assessment Of Microwave-Enhanced Heating Processes

Mostrar el registro completo del ítem

García-Baños, B.; Jimenez-Reinosa, J.; Penaranda-Foix, FL.; Fernandez, JF.; Catalá Civera, JM. (2019). Temperature Assessment Of Microwave-Enhanced Heating Processes. Scientific Reports. 9:1-10. https://doi.org/10.1038/s41598-019-47296-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144223

Ficheros en el ítem

Metadatos del ítem

Título: Temperature Assessment Of Microwave-Enhanced Heating Processes
Autor: García-Baños, Beatriz Jimenez-Reinosa, Julian Penaranda-Foix, Felipe L. Fernandez, José F. Catalá Civera, José Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] In this study, real-time and in-situ permittivity measurements under intense microwave electromagnetic fields are proposed as a powerful technique for the study of microwave-enhanced thermal processes in materials. ...[+]
Palabras clave: Electrical-conductivity , Dielectric analysis
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-019-47296-0
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-019-47296-0
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-86450-C4-1-R/ES/DISEÑO DE PROCESOS DE SINTERIZACION EN FRIO PARA NUEVOS MATERIALES NANOESTRUCTURADOS./
Agradecimientos:
The authors wish to thank the project MAT2017-86450-C4-1-R.
Tipo: Artículo

References

Zhou, J. et al. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions. Sci. Rep. 6, 25149 (2016).

Clark, D. E., Folz, D. C. & West, J. K. Processing materials with microwave energy. Mater. Sci. Eng. A287, 153–158 (2000).

Thostenson, E. T. & Chou, T. W. Microwave processing: fundamentals and applications. Composites A30(9), 1055–1071 (1999). [+]
Zhou, J. et al. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions. Sci. Rep. 6, 25149 (2016).

Clark, D. E., Folz, D. C. & West, J. K. Processing materials with microwave energy. Mater. Sci. Eng. A287, 153–158 (2000).

Thostenson, E. T. & Chou, T. W. Microwave processing: fundamentals and applications. Composites A30(9), 1055–1071 (1999).

Çengel, Y. A. Green thermodynamics. Int. J. Energy Res. 31, 1088–1104 (2007).

Adam, D. Out of the kitchen. Nature 421, 571–572 (2003).

Horikoshi, S., Watanabe, T., Narita, A., Suzuki, Y. & Serpone, N. The electromagnetic wave energy effect(s) in microwave–assisted organic syntheses (MAOS). Sci. Rep. 8, 5151 (2018).

Wada, Y. et al. Smelting magnesium metal using a microwave pidgeon method. Sci. Rep. 7, 46512 (2017).

Kappe, C. O., Pieber, B. & Dallinger, D. Microwave effects in organic synthesis: Myth or reality? Angew. Chem., Int. Ed. 52, 1088–1094 (2013).

Ma, J. Master equation analysis of thermal and nonthermal microwave effects. J. Phys. Chem. A. 120, 7989–7997 (2016).

Mishra, R. R. & Sharma, A. K. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Comp. Part A. 81, 78–97 (2016).

Sun, J., Wang, W. & Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials. 9, 231 (2016).

Liu, W. et al. Discussion on microwave-matter interaction mechanisms by in situ observation of “core-shell” microstructure during microwave sintering. Materials. 9, 120 (2016).

Reinosa, J. J., García-Baños, B., Catalá-Civera, J. M. & Fernández, J. F. A step ahead on efficient microwave heating for Kaolinite. Appl. Clay Sci. 168, 237–243 (2019).

Naito, A., Makino, Y., Tasei, Y. & Kawamura, I. Photoirradiation and microwave irradiation NMR spectroscopy in Experimental Approaches of NMR Spectroscopy (ed. The Nuclear Magnetic Resonance Society of Japan) 135-170 (Springer, 2017).

Schmink, J. R. & Leadbeater, N. E. Probing “microwave effects” using Raman spectroscopy. Org Biomol Chem. 7(18), 3842–3846 (2009).

Vaucher, S., Catala-Civera, J. M., Sarua, A., Pomeroy, J. & Kuball, M. Phase selectivity of microwave heating evidenced by Raman spectroscopy. J. Appl. Phys. 99, 113505 (2006).

Von Hippel, A.R. in Dielectric Materials and Applications. 301–416 (Artech House, 1995)

Garcia-Baños, B., Catala-Civera, J. M., Penaranda-Foix, F. L., Plaza-Gonzalez, P. & Llorens-Valles, G. In situ monitoring of microwave processing of materials at high temperatures through dielectric properties measurement. Materials 9, 349 (2016).

Cuccurullo, G., Berardi, P. G., Carfagna, R. & Pierro, V. IR temperature measurements in microwave heating. Infrared Phys. Technol. 43, 145–150 (2002).

Catala-Civera, J. M. et al. Dynamic measurement of dielectric properties of materials at high temperature during microwave heating in a dual mode cylindrical cavity. IEEE Trans. Microw. Theory Tech. 63, 2905–2914 (2015).

Kappe, C. O. How to measure reaction temperature in microwave-heated transformations. Chem. Soc. Rev. 42, 4977–4990 (2013).

Gangurde, L. S., Sturm, G. S. J., Devadiga, T. J., Stankiewicz, A. I. & Stefanidis, G. D. Complexity and challenges in noncontact high temperature measurements in microwave-assisted catalytic reactors. Ind. Eng. Chem. Res. 56, 13379–13391 (2017).

Ramirez, A., Hueso, J. L., Mallada, R. & Santamaria, J. In situ temperature measurements in microwave-heated gas-solid catalytic systems. Detection of hot spots and solid-fluid temperature gradients in the ethylene epoxidation reaction. Chem. Eng. J. 316, 50–60 (2017).

Sturm, G. S. J., Verweij, M. D., Van Gerven, T., Stankiewicz, A. I. & Stefanidis, G. D. On the effect of resonant microwave fields on temperature distribution in time and space. Int. J. Heat Mass Trans. 55, 3800–3811 (2012).

van Gool, W. Phase transition behaviour as a guide for selecting solid electrolyte materials In Phase Transitions–1973, Proceedings of the Conference on Phase Transitions and Their Applications in Materials Science (eds. Henisch, H. K., Roy, R. & Cross, L. E.) 373–377 (Pergamon Press, 1973).

Sabbah, R. et al. Reference materials for calorimetry and differential thermal analysis. Thermochim. Acta 331, 93–204 (1999).

Zhong, Z. & Gallagher, P. K. Temperature calibration of a simultaneous TG/DTA apparatus. Thermochim. Acta 186, 199–204 (1991).

Rao, S. R., Lingam, C. B., Rajesh, D., Vijayalakshmi, R. P. & Sunandana, C. S. Thermal and spectroscopy studies of Ag2SO4 and LiAgSO4. IOSR. J. Appl. Phys. 4-2, 39–43 (2013).

Secco, R. A. & Secco, I. A. Structural and nonstructural factors in fast ion conduction in Ag2SO4 at high pressure. Phys. Rev. B 56(6), 3099–3104 (1997).

Eysel, W., Breuer, K.H. Differential Scanning Calorimetry: Simultaneous temperature and calorimetric calibration In Analytical Calorimetry vol. 5 (eds. Jhonson, J.F & Gill, P.S.) 67–80 (Plenum Press, 1984).

Graves, P. R., Hua, G., Myhra, S. & Thompson, J. G. The Raman modes of the Aurivillius phases: temperature and polarization dependence”. J. Sol. State Chem. 114, 112–122 (1995).

Moure, A. Review and perspectives of Aurivillius structures as a lead free Piezoelectric system. Appl. Sci. 8(1), 62 (2018).

Shulman, H. & Testorf, M. Damjanovic & Setter, D.N. Microstructure, electrical conductivity and piezoelectric properties of bismuth titanate. J. Am. Ceram. Soc. 79, 3124–3128 (1996). [12].

Miyake, M. & Iwai, S. Phase transition of potassium sulfate, K2SO 4 (III); thermodynamical and phenomenological study. Phys Chem Minerals 7, 211 215 (1981).

ASTM Standard C 965-81. Standard practice for measurement of viscosity of glass above the softening point in Annual book of ASTM standards, Vol. 15.02 (ASTM, 1990).

Ehrt, D. & Keding, R. Electrical conductivity and viscosity of borosilicate glasses and melts. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 50(3), 165–171 (2009).

Grandjean, A., Malki, M., Simonnet, C., Manara, D. & Penelon, B. Correlation between electrical conductivity, viscosity, and structure in borosilicate glass-forming melts. Phys. Review B 75, 054112 (2007).

Limbach, R., Rodrigues, B. P. & Wondraczek, L. Strain-rate sensitivity of glasses. J. of Non-Crystalline Solids 404, 124–134 (2014).

García-Baños, B., Canós, A. J., Peñaranda-Foix, F. L. & Catalá-Civera, J. M. Non-invasive monitoring of polymer curing reactions by dielectrometry. IEEE Sensors Journal 11, 62–70 (2011).

Núñez, L., Gómez-Barreiro, S., Gracia-Fernández, C. A. & Núñez, M. R. Use of the dielectric analysis to complement previous thermoanalytical studies on the system diglycidyl ether of bisphenol A/1,2 diamine cyclohexane. Polymer 45, 1167–1175 (2004).

Lefebvre, D. R. et al. Dielectric analysis for in situ monitoring of gelatin renaturation and crosslinking. J. Appl. Polymer Sci. 101, 2765–2775 (2006).

Olszak-Humienik, M. & Jablonski, M. Thermal behavior of natural dolomite. J Therm Anal Calorim 119, 2239–2248 (2015).

Harrington, R. F. Time–Harmonic Electromagnetic Fields (Wiley, 2001).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem