Mostrar el registro sencillo del ítem
dc.contributor.author | Zulueta Guerrero, Ekaitz | es_ES |
dc.contributor.author | González González, Asier | es_ES |
dc.contributor.author | López Guede, José Manuel | es_ES |
dc.contributor.author | Calvo Gordillo, Isidro | es_ES |
dc.date.accessioned | 2020-05-27T14:58:24Z | |
dc.date.available | 2020-05-27T14:58:24Z | |
dc.date.issued | 2011-10-05 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/144435 | |
dc.description.abstract | [EN] In the present work a methodology is exposed to model using a Multi-Agent System (MAS) biological and physiological dynamic systems with discrete quantified variables, such as growth and decrease of populations or epidemiological modelling of disease. It is shown a procedure to transform a Ordinary Differential Equations system (ODE) (that models the environment correctly on an equivalent MAS using a schema based on Monte Carlo method. A practical case based on a mathematical moldel of Chronic Myeloid Leukaemia (CML) is used to compare the methodology based on agent with the traditional model based on an ODE system. A simulation for each model (MAS and ODE) is executed and the results obtained with both methodologies are compared. | es_ES |
dc.description.abstract | [ES] En el presente trabajo se expone una metodología para modelar mediante un Sistema Multi-Agente (SMA) sistemas biológicos y fisiológicos dinámicos con variables cuantificadas discretas, como el crecimiento y decrecimiento de poblaciones o el modelado epidemiológico de enfermedades. Se muestra un procedimiento para transformar un sistema de Ecuaciones Diferenciales Ordinarias (EDO) (que modela un entorno de forma correcta) en un SMA equivalente mediante un esquema basado en el método de Monte Carlo. Se utiliza un caso práctico fundamentado en un modelo matemático de Leucemia Mieloide Crónica (LMC) para comparar la metodología basada en agentes con el modelado tradicional basado en un sistema de EDO. Se realiza una simulación con cada modelo (SMA y EDO) y se compara los resultados obtenidos con ambas metodologías. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Differential equation | es_ES |
dc.subject | Agent-based model | es_ES |
dc.subject | Monte Carlo | es_ES |
dc.subject | Ecuaciones diferenciales | es_ES |
dc.subject | Modelo basado en agentes | es_ES |
dc.title | Simulación basada en SMA de sistemas originalmente representados con EDO | es_ES |
dc.title.alternative | SMA-based simulation of systems originally represented with EDO | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.riai.2011.09.011 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Zulueta Guerrero, E.; González González, A.; López Guede, JM.; Calvo Gordillo, I. (2011). Simulación basada en SMA de sistemas originalmente representados con EDO. Revista Iberoamericana de Automática e Informática industrial. 8(4):323-333. https://doi.org/10.1016/j.riai.2011.09.011 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.riai.2011.09.011 | es_ES |
dc.description.upvformatpinicio | 323 | es_ES |
dc.description.upvformatpfin | 333 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\9702 | es_ES |
dc.description.references | Banerjee, S., & Moses, M. E. (2009). A Hybrid Agent Based and Differential Equation Model of Body Size Effects on Pathogen Replication and Immune System Response. Artificial Immune Systems, 14-18. doi:10.1007/978-3-642-03246-2_5 | es_ES |
dc.description.references | Basse, B., & Ubezio, P. (2007). A Generalised Age- and Phase-Structured Model of Human Tumour Cell Populations Both Unperturbed and Exposed to a Range of Cancer Therapies. Bulletin of Mathematical Biology, 69(5), 1673-1690. doi:10.1007/s11538-006-9185-6 | es_ES |
dc.description.references | Bunimovich-Mendrazitsky, S., Byrne, H., & Stone, L. (2008). Mathematical Model of Pulsed Immunotherapy for Superficial Bladder Cancer. Bulletin of Mathematical Biology, 70(7), 2055-2076. doi:10.1007/s11538-008-9344-z | es_ES |
dc.description.references | Fianyo, E., Treuil, J.-P., Perrier, E., & Demazeau, Y. (1998). Multi-agent Architecture Integrating Heterogeneous Models of Dynamical Processes: The Representation of Time. Lecture Notes in Computer Science, 226-236. doi:10.1007/10692956_16 | es_ES |
dc.description.references | Guo, Z., Sloot, P. M. A., & Tay, J. C. (2008). A hybrid agent-based approach for modeling microbiological systems. Journal of Theoretical Biology, 255(2), 163-175. doi:10.1016/j.jtbi.2008.08.008 | es_ES |
dc.description.references | Lewis, J. T., & Pulè, J. V. (s. f.). Dynamical theories of Brownian motion. Lecture Notes in Physics, 294-296. doi:10.1007/bfb0013344 | es_ES |
dc.description.references | Moore, H., & Li, N. K. (2004). A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. Journal of Theoretical Biology, 227(4), 513-523. doi:10.1016/j.jtbi.2003.11.024 | es_ES |
dc.description.references | Murray J. D., 2002a. Models for Interacting Populations. Mathematical biology. Springer New York, 17, pp. 79-118. | es_ES |
dc.description.references | Murray J. D., 2002b. Dynamics of Infectious Diseases: Epidemic Models and AIDS. Mathematical biology, Springer New York, 17, pp. 315-394. | es_ES |
dc.description.references | NAGY, J. (2004). Competition and natural selection in a mathematical model of cancer. Bulletin of Mathematical Biology, 66(4), 663-687. doi:10.1016/j.bulm.2003.10.001 | es_ES |
dc.description.references | Redou, P., Kerdelo, S., Le Gal, C., Querrec, G., Rodin, V., Abgrall, J.-F., & Tisseau, J. (2005). Reaction-Agents: First Mathematical Validation of a Multi-agent System for Dynamical Biochemical Kinetics. Lecture Notes in Computer Science, 156-166. doi:10.1007/11595014_16 | es_ES |
dc.description.references | Spencer, S. L., Berryman, M. J., García, J. A., & Abbott, D. (2004). An ordinary differential equation model for the multistep transformation to cancer. Journal of Theoretical Biology, 231(4), 515-524. doi:10.1016/j.jtbi.2004.07.006 | es_ES |
dc.description.references | Szymańska, Z., Urbański, J., & Marciniak-Czochra, A. (2008). Mathematical modelling of the influence of heat shock proteins on cancer invasion of tissue. Journal of Mathematical Biology, 58(4-5), 819-844. doi:10.1007/s00285-008-0220-0 | es_ES |
dc.description.references | Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T., & Ferber, J. (2005). Environments for Multiagent Systems State-of-the-Art and Research Challenges. Lecture Notes in Computer Science, 1-47. doi:10.1007/978-3-540-32259-7_1 | es_ES |
dc.description.references | Wu, D., Zhou, J., & Li, Y. (2006). Unbiased estimation of Weibull parameters with the linear regression method. Journal of the European Ceramic Society, 26(7), 1099-1105. doi:10.1016/j.jeurceramsoc.2005.01.044 | es_ES |