- -

An unprecedented hetero-bimetallic three-dimensional spin crossover coordination polymer based on the tetrahedral [Hg(SeCN)4]2- building block

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An unprecedented hetero-bimetallic three-dimensional spin crossover coordination polymer based on the tetrahedral [Hg(SeCN)4]2- building block

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lan, W. es_ES
dc.contributor.author Valverde-Muñoz, F.J. es_ES
dc.contributor.author Hao, X. es_ES
dc.contributor.author Dou, Y. es_ES
dc.contributor.author Muñoz Roca, María Del Carmen es_ES
dc.contributor.author Zhou, Z. es_ES
dc.contributor.author Liu, H. es_ES
dc.contributor.author Liu, Q. es_ES
dc.contributor.author Real, J.A. es_ES
dc.contributor.author Zhang, D. es_ES
dc.date.accessioned 2020-05-29T03:33:48Z
dc.date.available 2020-05-29T03:33:48Z
dc.date.issued 2019-04-25 es_ES
dc.identifier.issn 1359-7345 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144588
dc.description.abstract [EN] Self-assembly of octahedral FeII ions, trans-1,2-bis(4-pyridyl) ethane (bpe) bridging ligands and [Hg(XCN)(4)](2-) (X = S (1), Se (2)) tetrahedral building blocks has afforded a new type of hetero-bimetallic Hg-II-Fe-II spin-crossover (SCO) 3D 6,4-connected coordination polymer (CP) formulated {Fe(bpe)[Hg(XCN)(4)]}(n). For X = S (1), the ligand field is close to the crossing point but 1 remains paramagnetic over all temperatures. In contrast, for X = Se (2) the complex undergoes complete thermal induced SCO behaviour centred at T-1/2 = 107.8 K and complete photoconversion of the low spin state into a metastable high-spin state (LIESST effect) with T-LIESST = 66.7 K. The current results provide a new route for the design and synthesis of new SCO functional materials with non-Hoffmann-type structures. es_ES
dc.description.sponsorship We are very thankful for the support from the National Natural Science Foundation of China (21671121 and 21773006) the Spanish Ministerio de Economiay Competitividad (MINECO) and FEDER funds (CTQ2016-78341-P and Unidad de Excelencia Maria de Maeztu MDM-2015-0538), and Generalitat Valenciana (PROMETEO/2016/147). F. J. V. M. thanks MINECO for a predoctoral FPI grant. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Magnetic-Properties es_ES
dc.subject X-Ray es_ES
dc.subject Spectroscopic investigations es_ES
dc.subject Polynuclear complexes es_ES
dc.subject Hg(Scn)(4)(2-) Unit es_ES
dc.subject Crystal-Structure es_ES
dc.subject Transition es_ES
dc.subject Pressure es_ES
dc.subject Behavior es_ES
dc.subject State es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title An unprecedented hetero-bimetallic three-dimensional spin crossover coordination polymer based on the tetrahedral [Hg(SeCN)4]2- building block es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9cc01291e es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21773006/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F147/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-78341-P/ES/MATERIALES SPIN CROSSOVER BIESTABLES: DE LAS PROPIEDADES MACROSCOPICAS A LA ESPINTRONICA MOLECULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21671121/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Lan, W.; Valverde-Muñoz, F.; Hao, X.; Dou, Y.; Muñoz Roca, MDC.; Zhou, Z.; Liu, H.... (2019). An unprecedented hetero-bimetallic three-dimensional spin crossover coordination polymer based on the tetrahedral [Hg(SeCN)4]2- building block. Chemical Communications. 55(32):4607-4610. https://doi.org/10.1039/c9cc01291e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9cc01291e es_ES
dc.description.upvformatpinicio 4607 es_ES
dc.description.upvformatpfin 4610 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 32 es_ES
dc.relation.pasarela S\392184 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references König, E. (1991). Nature and dynamics of the spin-state interconversion in metal complexes. Structure and Bonding, 51-152. doi:10.1007/3-540-53499-7_2 es_ES
dc.description.references Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermal and Optical Switching of Iron(II) Complexes. Angewandte Chemie International Edition in English, 33(20), 2024-2054. doi:10.1002/anie.199420241 es_ES
dc.description.references Real, J. A., Gaspar, A. B., Niel, V., & Muñoz, M. C. (2003). Communication between iron(II) building blocks in cooperative spin transition phenomena. Coordination Chemistry Reviews, 236(1-2), 121-141. doi:10.1016/s0010-8545(02)00220-5 es_ES
dc.description.references Spin Crossover in Transition Metal Compounds I-III , Top. Curr. Chem., ed. P. Gütlich and H. A. Goodwin , 2004 , vol. 233–235 es_ES
dc.description.references Real, J. A., Gaspar, A. B., & Muñoz, M. C. (2005). Thermal, pressure and light switchable spin-crossover materials. Dalton Transactions, (12), 2062. doi:10.1039/b501491c es_ES
dc.description.references Bousseksou, A., Molnár, G., Salmon, L., & Nicolazzi, W. (2011). Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews, 40(6), 3313. doi:10.1039/c1cs15042a es_ES
dc.description.references Spin-crossover materials: properties and applications , ed. M. A. Halcrow , John Wiley & Sons , 2013 es_ES
dc.description.references See the Thematic issue edited by A. Bousseksou and entitled “Spin crossover phenomenon” appeared in C. R. Chim. , 2018 , 21 , 1055–1299, devoted to recent advances in the field es_ES
dc.description.references P. N. Martinho , C.Rajnak and M.Ruben , in Spin-Crossover Materials: Properties and Applications , ed. Halcrow, M. A. , Wiley , 2013 , p. 376 es_ES
dc.description.references Senthil Kumar, K., & Ruben, M. (2017). Emerging trends in spin crossover (SCO) based functional materials and devices. Coordination Chemistry Reviews, 346, 176-205. doi:10.1016/j.ccr.2017.03.024 es_ES
dc.description.references Molnár, G., Rat, S., Salmon, L., Nicolazzi, W., & Bousseksou, A. (2017). Spin Crossover Nanomaterials: From Fundamental Concepts to Devices. Advanced Materials, 30(5), 1703862. doi:10.1002/adma.201703862 es_ES
dc.description.references Kitazawa, T., Gomi, Y., Takahashi, M., Takeda, M., Enomoto, M., Miyazaki, A., & Enoki, T. (1996). Spin-crossover behaviour of the coordination polymer FeII(C5H5N)2NiII(CN)4. Journal of Materials Chemistry, 6(1), 119. doi:10.1039/jm9960600119 es_ES
dc.description.references Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B., & Real, J. A. (2001). Cooperative Spin Crossover Behavior in Cyanide-Bridged Fe(II)−M(II) Bimetallic 3D Hofmann-like Networks (M = Ni, Pd, and Pt). Inorganic Chemistry, 40(16), 3838-3839. doi:10.1021/ic010259y es_ES
dc.description.references Niel, V., Muñoz, M. C., Gaspar, A. B., Galet, A., Levchenko, G., & Real, J. A. (2002). Thermal-, Pressure-, and Light-Induced Spin Transition in Novel Cyanide-Bridged FeIIbAgI Bimetallic Compounds with Three-Dimensional Interpenetrating Double Structures {FeIILx[Ag(CN)2]2}⋅G. Chemistry - A European Journal, 8(11), 2446. doi:10.1002/1521-3765(20020603)8:11<2446::aid-chem2446>3.0.co;2-k es_ES
dc.description.references Muñoz, M. C., & Real, J. A. (2011). Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers. Coordination Chemistry Reviews, 255(17-18), 2068-2093. doi:10.1016/j.ccr.2011.02.004 es_ES
dc.description.references M. C. Muñoz and J. A.Real , in Spin-Crossover Materials: Properties and Applications , ed. M. A. Halcrow , John Wiley & Sons , Hoboken, N.J. , 2013 , p. 121 es_ES
dc.description.references Ni, Z.-P., Liu, J.-L., Hoque, M. N., Liu, W., Li, J.-Y., Chen, Y.-C., & Tong, M.-L. (2017). Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 335, 28-43. doi:10.1016/j.ccr.2016.12.002 es_ES
dc.description.references Galán Mascarós, J. R., Aromí, G., & Darawsheh, M. (2018). Polynuclear Fe(II) complexes: Di/trinuclear molecules and coordination networks. Comptes Rendus Chimie, 21(12), 1209-1229. doi:10.1016/j.crci.2018.07.005 es_ES
dc.description.references Wang, X.-Q., Yu, W.-T., Xu, D., Lu, M.-K., Yuan, D.-R., & Lu, G.-T. (2000). Manganese mercury thiocyanate (MMTC) glycol monomethyl ether. Acta Crystallographica Section C Crystal Structure Communications, 56(6), 647-648. doi:10.1107/s0108270100003188 es_ES
dc.description.references Wang, X. Q., Yu, W. T., Xu, D., Lu, M. K., & Yuan, D. R. (2001). Poly[[[tri(urea-κO)manganese(II)]-μ-thiocyanato-κ2N:S-mercury(II)]-tri-μ-tetrathiocyanato]. Acta Crystallographica Section C Crystal Structure Communications, 58(1), m36-m38. doi:10.1107/s010827010101719x es_ES
dc.description.references Jian, F.-F., Xiao, H.-L., & Liu, F. Q. (2006). Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN)4]2−: Synthesis, crystal structure, magnetic properties and ESR studies. Journal of Solid State Chemistry, 179(12), 3695-3703. doi:10.1016/j.jssc.2006.08.001 es_ES
dc.description.references Li, C.-S., Xue, L., Che, Y.-X., Luo, F., Zheng, J.-M., & Mak, T. C. W. (2007). Synthesis, structure and magnetic properties of two μ-oxo and thiocyanato-bridged manganese(II)–mercury(II) coordination polymers. Inorganica Chimica Acta, 360(11), 3569-3574. doi:10.1016/j.ica.2007.04.043 es_ES
dc.description.references Kruszynski, R., Machura, B., Wolff, M., Kusz, J., Mroziński, J., & Bieńko, A. (2009). Synthesis, crystal structure, magnetic properties and EPR studies of Cu/Hg bimetallic thiocyanato-bridged coordination polymer. Inorganica Chimica Acta, 362(4), 1369-1373. doi:10.1016/j.ica.2008.05.009 es_ES
dc.description.references Machura, B., Świtlicka, A., Mroziński, J., Kruszynski, R., & Kusz, J. (2010). Heterobimetallic Cu(II)–Hg(II) polynuclear complexes containing Hg(SCN)42− unit – Synthesis, spectroscopic investigations, X-ray studies and magnetic properties. Polyhedron, 29(8), 2023-2032. doi:10.1016/j.poly.2010.03.016 es_ES
dc.description.references Machura, B., Palion, J., Świtlicka, A., Mroziński, J., & Kruszynski, R. (2011). Heterobimetallic Mn(II)–Hg(II) polynuclear complexes containing Hg(SCN)42− unit – Synthesis, spectroscopic investigations, X-ray studies and magnetic properties. Polyhedron, 30(15), 2499-2504. doi:10.1016/j.poly.2011.06.018 es_ES
dc.description.references Machura, B., Świtlicka, A., Zwoliński, P., Mroziński, J., Kalińska, B., & Kruszynski, R. (2013). Novel bimetallic thiocyanate-bridged Cu(II)–Hg(II) compounds—synthesis, X-Ray studies and magnetic properties. Journal of Solid State Chemistry, 197, 218-227. doi:10.1016/j.jssc.2012.08.041 es_ES
dc.description.references Morsali, A., & Masoomi, M. Y. (2009). Structures and properties of mercury(II) coordination polymers. Coordination Chemistry Reviews, 253(13-14), 1882-1905. doi:10.1016/j.ccr.2009.02.018 es_ES
dc.description.references Zhang, D., Valverde-Muñoz, F. J., Bartual-Murgui, C., Piñeiro-López, L., Muñoz, M. C., & Real, J. A. (2018). {[Hg(SCN)3]2(μ-L)}2–: An Efficient Secondary Building Unit for the Synthesis of 2D Iron(II) Spin-Crossover Coordination Polymers. Inorganic Chemistry, 57(3), 1562-1571. doi:10.1021/acs.inorgchem.7b02906 es_ES
dc.description.references Trzop, E., Zhang, D., Piñeiro-Lopez, L., Valverde-Muñoz, F. J., Carmen Muñoz, M., Palatinus, L., … Collet, E. (2016). First Step Towards a Devil’s Staircase in Spin-Crossover Materials. Angewandte Chemie International Edition, 55(30), 8675-8679. doi:10.1002/anie.201602441 es_ES
dc.description.references Zhang, D., Trzop, E., Valverde-Muñoz, F. J., Piñeiro-López, L., Muñoz, M. C., Collet, E., & Real, J. A. (2017). Competing Phases Involving Spin-State and Ligand Structural Orderings in a Multistable Two-Dimensional Spin Crossover Coordination Polymer. Crystal Growth & Design, 17(5), 2736-2745. doi:10.1021/acs.cgd.7b00218 es_ES
dc.description.references O. Kahn , Molecular Magnetism , VCH , New York , 1993 es_ES
dc.description.references R. L. Carlin , Magnetochemistry , Springer Verlag , Berlin , 1986 es_ES
dc.description.references Slichter, C. P., & Drickamer, H. G. (1972). Pressure‐Induced Electronic Changes in Compounds of Iron. The Journal of Chemical Physics, 56(5), 2142-2160. doi:10.1063/1.1677511 es_ES
dc.description.references Sorai, M. (s. f.). Heat Capacity Studies of Spin Crossover Systems. Spin Crossover in Transition Metal Compounds III, 153-170. doi:10.1007/b95426 es_ES
dc.description.references Decurtins, S., Gütlich, P., Köhler, C. P., Spiering, H., & Hauser, A. (1984). Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chemical Physics Letters, 105(1), 1-4. doi:10.1016/0009-2614(84)80403-0 es_ES
dc.description.references Hauser, A. (1991). Intersystem crossing in Fe(II) coordination compounds. Coordination Chemistry Reviews, 111, 275-290. doi:10.1016/0010-8545(91)84034-3 es_ES
dc.description.references Létard, J.-F., Guionneau, P., Rabardel, L., Howard, J. A. K., Goeta, A. E., Chasseau, D., & Kahn, O. (1998). Structural, Magnetic, and Photomagnetic Studies of a Mononuclear Iron(II) Derivative Exhibiting an Exceptionally Abrupt Spin Transition. Light-Induced Thermal Hysteresis Phenomenon. Inorganic Chemistry, 37(17), 4432-4441. doi:10.1021/ic980107b es_ES
dc.description.references Valverde-Muñoz, F. J., Muñoz, M. C., Ferrer, S., Bartual-Murgui, C., & Real, J. A. (2018). Switchable Spin-Crossover Hofmann-Type 3D Coordination Polymers Based on Tri- and Tetratopic Ligands. Inorganic Chemistry, 57(19), 12195-12205. doi:10.1021/acs.inorgchem.8b01842 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem