- -

Assessing the optimum combustion under constrained conditions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Assessing the optimum combustion under constrained conditions

Show full item record

Olmeda, P.; Martín, J.; Novella Rosa, R.; Blanco-Cavero, D. (2020). Assessing the optimum combustion under constrained conditions. International Journal of Engine Research. 21(5):811-823. https://doi.org/10.1177/1468087418814086

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145397

Files in this item

Item Metadata

Title: Assessing the optimum combustion under constrained conditions
Author: Olmeda, P. Martín, Jaime Novella Rosa, Ricardo Blanco-Cavero, Diego
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
[EN] This work studies the optimum heat release law of a direct injection diesel engine under constrained conditions. For this purpose, a zero-dimensional predictive model of a diesel engine is coupled to an optimization ...[+]
Subjects: Diesel engine , Combustion optimization , NOx emissions , Temperature swing coating , Efficiency
Copyrigths: Reserva de todos los derechos
Source:
International Journal of Engine Research. (issn: 1468-0874 )
DOI: 10.1177/1468087418814086
Publisher:
SAGE Publications
Publisher version: https://doi.org/10.1177/1468087418814086
Project ID:
UPV/FPI-S2-2016-1356
Ministerio de economía y competitividad/FEDER-ICTS-2012-06
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89894-R/ES/METODOLOGIA PARA LA PREDICCION DE EMISIONES DE CO2 Y CONTAMINANTES DE UN MOTOR ALTERNATIVO/
Thanks:
This work was partially funded by GM Global R&D and the Government of Spain through Project TRA2017-89894-R. In addition, the authors acknowledge that some equipment used in this work has been partially supported by FEDER ...[+]
Type: Artículo

References

Degraeuwe, B., & Weiss, M. (2017). Does the New European Driving Cycle (NEDC) really fail to capture the NOX emissions of diesel cars in Europe? Environmental Pollution, 222, 234-241. doi:10.1016/j.envpol.2016.12.050

Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028

Kiplimo, R., Tomita, E., Kawahara, N., & Yokobe, S. (2012). Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine. Applied Thermal Engineering, 37, 165-175. doi:10.1016/j.applthermaleng.2011.11.011 [+]
Degraeuwe, B., & Weiss, M. (2017). Does the New European Driving Cycle (NEDC) really fail to capture the NOX emissions of diesel cars in Europe? Environmental Pollution, 222, 234-241. doi:10.1016/j.envpol.2016.12.050

Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028

Kiplimo, R., Tomita, E., Kawahara, N., & Yokobe, S. (2012). Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine. Applied Thermal Engineering, 37, 165-175. doi:10.1016/j.applthermaleng.2011.11.011

Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661

Caputo, S., Millo, F., Cifali, G., & Pesce, F. C. (2017). Numerical Investigation on the Effects of Different Thermal Insulation Strategies for a Passenger Car Diesel Engine. SAE International Journal of Engines, 10(4), 2154-2165. doi:10.4271/2017-24-0021

Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665

Benajes, J., Olmeda, P., Martín, J., Blanco-Cavero, D., & Warey, A. (2017). Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine. Energy, 122, 168-181. doi:10.1016/j.energy.2017.01.082

RAKOPOULOS, C., & GIAKOUMIS, E. (2006). Second-law analyses applied to internal combustion engines operation. Progress in Energy and Combustion Science, 32(1), 2-47. doi:10.1016/j.pecs.2005.10.001

Eriksson, L., & Sivertsson, M. (2015). Computing Optimal Heat Release Rates in Combustion Engines. SAE International Journal of Engines, 8(3), 1069-1079. doi:10.4271/2015-01-0882

Eriksson, L., & Sivertsson, M. (2016). Calculation of Optimal Heat Release Rates under Constrained Conditions. SAE International Journal of Engines, 9(2), 1143-1162. doi:10.4271/2016-01-0812

Guardiola, C., Climent, H., Pla, B., & Reig, A. (2017). Optimal Control as a method for Diesel engine efficiency assessment including pressure and NO x constraints. Applied Thermal Engineering, 117, 452-461. doi:10.1016/j.applthermaleng.2017.02.056

Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005

Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1

Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006

Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639

Benajes, J., Novella, R., De Lima, D., & Tribotté, P. (2014). Analysis of combustion concepts in a newly designed two-stroke high-speed direct injection compression ignition engine. International Journal of Engine Research, 16(1), 52-67. doi:10.1177/1468087414562867

Benajes, J., Martín, J., Novella, R., & Thein, K. (2016). Understanding the performance of the multiple injection gasoline partially premixed combustion concept implemented in a 2-Stroke high speed direct injection compression ignition engine. Applied Energy, 161, 465-475. doi:10.1016/j.apenergy.2015.10.034

Guardiola, C., Martín, J., Pla, B., & Bares, P. (2017). Cycle by cycle NOx model for diesel engine control. Applied Thermal Engineering, 110, 1011-1020. doi:10.1016/j.applthermaleng.2016.08.170

Benajes, J., Olmeda, P., Martín, J., & Carreño, R. (2014). A new methodology for uncertainties characterization in combustion diagnosis and thermodynamic modelling. Applied Thermal Engineering, 71(1), 389-399. doi:10.1016/j.applthermaleng.2014.07.010

Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021

Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., & Warey, A. (2017). Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy, 119, 1010-1023. doi:10.1016/j.energy.2016.11.040

Arrègle, J., López, J. J., Guardiola, C., & Monin, C. (2010). On Board NOx Prediction in Diesel Engines: A Physical Approach. Lecture Notes in Control and Information Sciences, 25-36. doi:10.1007/978-1-84996-071-7_2

Steinparzer, F., Nefischer, P., Hiemesch, D., & Rechberger, E. (2016). The New BMW Six-cylinder Top Engine with Innovative Turbocharging Concept. MTZ worldwide, 77(10), 38-45. doi:10.1007/s38313-016-0104-4

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record