- -

Numerical Modelling of Ballistic Impact Response at Low Velocity in Aramid Fabrics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical Modelling of Ballistic Impact Response at Low Velocity in Aramid Fabrics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Feito-Sánchez, Norberto es_ES
dc.contributor.author Loya, J.A. es_ES
dc.contributor.author Muñoz-Sánchez, A. es_ES
dc.contributor.author Das, R. es_ES
dc.date.accessioned 2020-06-06T03:32:22Z
dc.date.available 2020-06-06T03:32:22Z
dc.date.issued 2019-06-28 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145540
dc.description.abstract [EN] In this study, the effect of the impact angle of a projectile during low-velocity impact on Kevlar fabrics has been investigated using a simplified numerical model. The implementation of mesoscale models is complex and usually involves long computation time, in contrast to the practical industry needs to obtain accurate results rapidly. In addition, when the simulation includes more than one layer of composite ply, the computational time increases even in the case of hybrid models. With the goal of providing useful and rapid prediction tools to the industry, a simplified model has been developed in this work. The model offers an advantage in the reduced computational time compared to a full 3D model (around a 90% faster). The proposed model has been validated against equivalent experimental and numerical results reported in the literature with acceptable deviations and accuracies for design requirements. The proposed numerical model allows the study of the influence of the geometry on the impact response of the composite. Finally, after a parametric study related to the number of layers and angle of impact, using a response surface methodology, a mechanistic model and a surface diagram have been presented in order to help with the calculation of the ballistic limit. es_ES
dc.description.sponsorship This research was funded by the Ministry of Economy and Competitiveness from Spain, grant number BES-2012-055162 and the international collaborations subprogram under the reference EEBB-I-2016-11586. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Aramid es_ES
dc.subject Impact es_ES
dc.subject Computational techniques es_ES
dc.subject Finite elements es_ES
dc.subject Mechanical analysis es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Numerical Modelling of Ballistic Impact Response at Low Velocity in Aramid Fabrics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma12132087 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2012-055162/ES/BES-2012-055162/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//EEBB-I-16-11586/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Feito-Sánchez, N.; Loya, J.; Muñoz-Sánchez, A.; Das, R. (2019). Numerical Modelling of Ballistic Impact Response at Low Velocity in Aramid Fabrics. Materials. 12(13):1-15. https://doi.org/10.3390/ma12132087 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma12132087 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 13 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.identifier.pmid 31261686 es_ES
dc.identifier.pmcid PMC6651552 es_ES
dc.relation.pasarela S\400998 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Tabiei, A., & Nilakantan, G. (2008). Ballistic Impact of Dry Woven Fabric Composites: A Review. Applied Mechanics Reviews, 61(1). doi:10.1115/1.2821711 es_ES
dc.description.references Lim, C. ., Tan, V. B. ., & Cheong, C. . (2002). Perforation of high-strength double-ply fabric system by varying shaped projectiles. International Journal of Impact Engineering, 27(6), 577-591. doi:10.1016/s0734-743x(02)00004-0 es_ES
dc.description.references Tan, V. B. ., Lim, C. ., & Cheong, C. . (2003). Perforation of high-strength fabric by projectiles of different geometry. International Journal of Impact Engineering, 28(2), 207-222. doi:10.1016/s0734-743x(02)00055-6 es_ES
dc.description.references Shim, V. P. W., Tan, V. B. C., & Tay, T. E. (1995). Modelling deformation and damage characteristics of woven fabric under small projectile impact. International Journal of Impact Engineering, 16(4), 585-605. doi:10.1016/0734-743x(94)00063-3 es_ES
dc.description.references Park, Y., Kim, Y., Baluch, A. H., & Kim, C.-G. (2014). Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric. International Journal of Impact Engineering, 72, 67-74. doi:10.1016/j.ijimpeng.2014.05.007 es_ES
dc.description.references Taraghi, I., Fereidoon, A., & Taheri-Behrooz, F. (2014). Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures. Materials & Design, 53, 152-158. doi:10.1016/j.matdes.2013.06.051 es_ES
dc.description.references Nilakantan, G., Merrill, R. L., Keefe, M., Gillespie, J. W., & Wetzel, E. D. (2015). Experimental investigation of the role of frictional yarn pull-out and windowing on the probabilistic impact response of kevlar fabrics. Composites Part B: Engineering, 68, 215-229. doi:10.1016/j.compositesb.2014.08.033 es_ES
dc.description.references López-Gálvez, H., Rodriguez-Millán, M., Feito, N., & Miguelez, H. (2016). A method for inter-yarn friction coefficient calculation for plain wave of aramid fibers. Mechanics Research Communications, 74, 52-56. doi:10.1016/j.mechrescom.2016.04.004 es_ES
dc.description.references Duan, Y., Keefe, M., Bogetti, T. A., Cheeseman, B. A., & Powers, B. (2006). A numerical investigation of the influence of friction on energy absorption by a high-strength fabric subjected to ballistic impact. International Journal of Impact Engineering, 32(8), 1299-1312. doi:10.1016/j.ijimpeng.2004.11.005 es_ES
dc.description.references Cunniff, P. M. (1992). An Analysis of the System Effects in Woven Fabrics under Ballistic Impact. Textile Research Journal, 62(9), 495-509. doi:10.1177/004051759206200902 es_ES
dc.description.references Pan, N., Lin, Y., Wang, X., & Postle, R. (2000). An Oblique Fiber Bundle Test and Analysis. Textile Research Journal, 70(8), 671-674. doi:10.1177/004051750007000803 es_ES
dc.description.references Ha-Minh, C., Imad, A., Boussu, F., & Kanit, T. (2016). Experimental and numerical investigation of a 3D woven fabric subjected to a ballistic impact. International Journal of Impact Engineering, 88, 91-101. doi:10.1016/j.ijimpeng.2015.08.011 es_ES
dc.description.references Chocron Benloulo, I. S., Rodríguez, J., Martínez, M. A., & Sánchez Gálvez, V. (1997). Dynamic tensile testing of aramid and polyethylene fiber composites. International Journal of Impact Engineering, 19(2), 135-146. doi:10.1016/s0734-743x(96)00017-6 es_ES
dc.description.references Cheeseman, B. A., & Bogetti, T. A. (2003). Ballistic impact into fabric and compliant composite laminates. Composite Structures, 61(1-2), 161-173. doi:10.1016/s0263-8223(03)00029-1 es_ES
dc.description.references Rodriguez, J., Chocron, I. S., Martinez, M. A., & Sánchez-Gálvez, V. (1996). High strain rate properties of aramid and polyethylene woven fabric composites. Composites Part B: Engineering, 27(2), 147-154. doi:10.1016/1359-8368(95)00036-4 es_ES
dc.description.references Garcia, C., Trendafilova, I., & Zucchelli, A. (2018). The Effect of Polycaprolactone Nanofibers on the Dynamic and Impact Behavior of Glass Fibre Reinforced Polymer Composites. Journal of Composites Science, 2(3), 43. doi:10.3390/jcs2030043 es_ES
dc.description.references Garcia, C., & Trendafilova, I. (2019). Triboelectric sensor as a dual system for impact monitoring and prediction of the damage in composite structures. Nano Energy, 60, 527-535. doi:10.1016/j.nanoen.2019.03.070 es_ES
dc.description.references ARUNIIT, A., KERS, J., GOLJANDIN, D., SAARNA, M., TALL, K., MAJAK, J., & HERRANEN, H. (2011). Particulate Filled Composite Plastic Materials from Recycled Glass Fibre Reinforced Plastics. Materials Science, 17(3). doi:10.5755/j01.ms.17.3.593 es_ES
dc.description.references Ramaiah, G. B., Chennaiah, R. Y., & Satyanarayanarao, G. K. (2010). Investigation and modeling on protective textiles using artificial neural networks for defense applications. Materials Science and Engineering: B, 168(1-3), 100-105. doi:10.1016/j.mseb.2009.12.029 es_ES
dc.description.references Lopes, C. S., Seresta, O., Coquet, Y., Gürdal, Z., Camanho, P. P., & Thuis, B. (2009). Low-velocity impact damage on dispersed stacking sequence laminates. Part I: Experiments. Composites Science and Technology, 69(7-8), 926-936. doi:10.1016/j.compscitech.2009.02.009 es_ES
dc.description.references Duan, Y., Keefe, M., Bogetti, T. A., & Cheeseman, B. A. (2005). Modeling the role of friction during ballistic impact of a high-strength plain-weave fabric. Composite Structures, 68(3), 331-337. doi:10.1016/j.compstruct.2004.03.026 es_ES
dc.description.references Rao, M. P., Duan, Y., Keefe, M., Powers, B. M., & Bogetti, T. A. (2009). Modeling the effects of yarn material properties and friction on the ballistic impact of a plain-weave fabric. Composite Structures, 89(4), 556-566. doi:10.1016/j.compstruct.2008.11.012 es_ES
dc.description.references Nilakantan, G., Keefe, M., Wetzel, E. D., Bogetti, T. A., & Gillespie, J. W. (2011). Computational modeling of the probabilistic impact response of flexible fabrics. Composite Structures, 93(12), 3163-3174. doi:10.1016/j.compstruct.2011.06.013 es_ES
dc.description.references Nilakantan, G., & Gillespie, J. W. (2012). Ballistic impact modeling of woven fabrics considering yarn strength, friction, projectile impact location, and fabric boundary condition effects. Composite Structures, 94(12), 3624-3634. doi:10.1016/j.compstruct.2012.05.030 es_ES
dc.description.references Nilakantan, G., Wetzel, E. D., Bogetti, T. A., & Gillespie, J. W. (2012). Finite element analysis of projectile size and shape effects on the probabilistic penetration response of high strength fabrics. Composite Structures, 94(5), 1846-1854. doi:10.1016/j.compstruct.2011.12.028 es_ES
dc.description.references Nilakantan, G., Wetzel, E. D., Bogetti, T. A., & Gillespie, J. W. (2013). A deterministic finite element analysis of the effects of projectile characteristics on the impact response of fully clamped flexible woven fabrics. Composite Structures, 95, 191-201. doi:10.1016/j.compstruct.2012.07.023 es_ES
dc.description.references Nilakantan, G., & Nutt, S. (2014). Effects of fabric target shape and size on the V50 ballistic impact response of soft body armor. Composite Structures, 116, 661-669. doi:10.1016/j.compstruct.2014.06.002 es_ES
dc.description.references Grujicic, M., Bell, W. C., Arakere, G., He, T., & Cheeseman, B. A. (2009). A meso-scale unit-cell based material model for the single-ply flexible-fabric armor. Materials & Design, 30(9), 3690-3704. doi:10.1016/j.matdes.2009.02.008 es_ES
dc.description.references Grujicic, M., Arakere, G., He, T., Bell, W. C., Glomski, P. S., & Cheeseman, B. A. (2009). Multi-scale ballistic material modeling of cross-plied compliant composites. Composites Part B: Engineering, 40(6), 468-482. doi:10.1016/j.compositesb.2009.02.002 es_ES
dc.description.references Barauskas, R., & Abraitienė, A. (2007). Computational analysis of impact of a bullet against the multilayer fabrics in LS-DYNA. International Journal of Impact Engineering, 34(7), 1286-1305. doi:10.1016/j.ijimpeng.2006.06.002 es_ES
dc.description.references Ha-Minh, C., Boussu, F., Kanit, T., Crépin, D., & Imad, A. (2011). Analysis on failure mechanisms of an interlock woven fabric under ballistic impact. Engineering Failure Analysis, 18(8), 2179-2187. doi:10.1016/j.engfailanal.2011.07.011 es_ES
dc.description.references Ha-Minh, C., Imad, A., Kanit, T., & Boussu, F. (2013). Numerical analysis of a ballistic impact on textile fabric. International Journal of Mechanical Sciences, 69, 32-39. doi:10.1016/j.ijmecsci.2013.01.014 es_ES
dc.description.references Park, Y., Kim, Y., Baluch, A. H., & Kim, C.-G. (2015). Numerical simulation and empirical comparison of the high velocity impact of STF impregnated Kevlar fabric using friction effects. Composite Structures, 125, 520-529. doi:10.1016/j.compstruct.2015.02.041 es_ES
dc.description.references Chu, T.-L., Ha-Minh, C., & Imad, A. (2016). A numerical investigation of the influence of yarn mechanical and physical properties on the ballistic impact behavior of a Kevlar KM2 ® woven fabric. Composites Part B: Engineering, 95, 144-154. doi:10.1016/j.compositesb.2016.03.018 es_ES
dc.description.references Das, S., Jagan, S., Shaw, A., & Pal, A. (2015). Determination of inter-yarn friction and its effect on ballistic response of para-aramid woven fabric under low velocity impact. Composite Structures, 120, 129-140. doi:10.1016/j.compstruct.2014.09.063 es_ES
dc.description.references Nilakantan, G., & Gillespie, J. W. (2013). Yarn pull-out behavior of plain woven Kevlar fabrics: Effect of yarn sizing, pullout rate, and fabric pre-tension. Composite Structures, 101, 215-224. doi:10.1016/j.compstruct.2013.02.018 es_ES
dc.description.references Nilakantan, G., & Nutt, S. (2014). Effects of clamping design on the ballistic impact response of soft body armor. Composite Structures, 108, 137-150. doi:10.1016/j.compstruct.2013.09.017 es_ES
dc.description.references Rao, M. P., Nilakantan, G., Keefe, M., Powers, B. M., & Bogetti, T. A. (2009). Global/Local Modeling of Ballistic Impact onto Woven Fabrics. Journal of Composite Materials, 43(5), 445-467. doi:10.1177/0021998308097684 es_ES
dc.description.references Nilakantan, G., Keefe, M., Bogetti, T. A., Adkinson, R., & Gillespie, J. W. (2010). On the finite element analysis of woven fabric impact using multiscale modeling techniques. International Journal of Solids and Structures, 47(17), 2300-2315. doi:10.1016/j.ijsolstr.2010.04.029 es_ES
dc.description.references Nilakantan, G., Keefe, M., Bogetti, T. A., & Gillespie, J. W. (2010). Multiscale modeling of the impact of textile fabrics based on hybrid element analysis. International Journal of Impact Engineering, 37(10), 1056-1071. doi:10.1016/j.ijimpeng.2010.04.007 es_ES
dc.description.references Ha-Minh, C., Kanit, T., Boussu, F., & Imad, A. (2011). Numerical multi-scale modeling for textile woven fabric against ballistic impact. Computational Materials Science, 50(7), 2172-2184. doi:10.1016/j.commatsci.2011.02.029 es_ES
dc.description.references Lozano-Mínguez, E., Palomar, M., Infante-García, D., Rupérez, M. J., & Giner, E. (2018). Assessment of mechanical properties of human head tissues for trauma modelling. International Journal for Numerical Methods in Biomedical Engineering, 34(5), e2962. doi:10.1002/cnm.2962 es_ES
dc.description.references Palomar, M., Lozano-Mínguez, E., Rodríguez-Millán, M., Miguélez, M. H., & Giner, E. (2018). Relevant factors in the design of composite ballistic helmets. Composite Structures, 201, 49-61. doi:10.1016/j.compstruct.2018.05.076 es_ES
dc.description.references Moure, M. M., Feito, N., Aranda-Ruiz, J., Loya, J. A., & Rodriguez-Millan, M. (2019). On the characterization and modelling of high-performance para-aramid fabrics. Composite Structures, 212, 326-337. doi:10.1016/j.compstruct.2019.01.049 es_ES
dc.description.references Abtew, M. A., Boussu, F., Bruniaux, P., Loghin, C., & Cristian, I. (2019). Ballistic impact mechanisms – A review on textiles and fibre-reinforced composites impact responses. Composite Structures, 223, 110966. doi:10.1016/j.compstruct.2019.110966 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem