Mostrar el registro sencillo del ítem
dc.contributor.author | Serrano, J.R. | es_ES |
dc.contributor.author | Novella Rosa, Ricardo | es_ES |
dc.contributor.author | Gómez-Soriano, Josep | es_ES |
dc.contributor.author | Martínez-Hernándiz, Pablo José | es_ES |
dc.date.accessioned | 2020-06-12T03:33:05Z | |
dc.date.available | 2020-06-12T03:33:05Z | |
dc.date.issued | 2018-10 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146159 | |
dc.description.abstract | [EN] In the present work, a numerical methodology based on three-dimensional (3D) computational fluid dynamics (CFD) was developed to predict knock in a 2-Stroke engine operating with gasoline Partially Premixed Combustion (PPC) concept. Single-cycle Unsteady Reynolds-Averaged Navier Stokes (URANS) simulations using the renormalization group (RNG) k - epsilon model were performed in parallel while the initial conditions are accordingly perturbed in order to imitate the variability in the in-cylinder conditions due to engine operation. Results showed a good agreement between experiment and CFD simulation with respect to cycle-averaged and deviation of the ignition timing, combustion phasing, peak pressure magnitude and location. Moreover, the numerical method was also demonstrated to be capable of predicting knock features, such as maximum pressure rise rate and knock intensity, with good accuracy. Finally, the CFD solution allowed to give more insight about in-cylinder processes that lead to the knocking combustion and its subsequent effects. | es_ES |
dc.description.sponsorship | The work has been partially supported by the Spanish Ministerio de Economia y Competitividad through grant number TRA2016-79185-R. The equipment used in this work has been partially supported by FEDER project funds "Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT), (FEDER-ICTS-2012-06)" from the operational program of unique scientific and technical infrastructure of the Spanish Ministerio de Economia y Competitividad. In addition, J. Gomez-Soriano is partially supported by an FPI contract (FPI-S2-2016-1353) of the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-16)" of the Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Gasoline PPC concept | es_ES |
dc.subject | 2-stroke engine | es_ES |
dc.subject | Knocking combustion | es_ES |
dc.subject | CFD modelling | es_ES |
dc.subject | Cycle-to-cycle variation | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Computational Methodology for Knocking Combustion Analysis in Compression-Ignited Advanced Concepts | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app8101707 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI-S2-2016-1353/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2016-79185-R/ES/DESARROLLO DE HERRAMIENTAS EXPERIMENTALES Y COMPUTACIONALES PARA LA CARACTERIZACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE EN MOTORES DE ENCENDIDO POR COMPRESION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-16/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Serrano, J.; Novella Rosa, R.; Gómez-Soriano, J.; Martínez-Hernándiz, PJ. (2018). Computational Methodology for Knocking Combustion Analysis in Compression-Ignited Advanced Concepts. Applied Sciences. 8(10):1-13. https://doi.org/10.3390/app8101707 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app8101707 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\377378 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Serrano, J. (2017). Imagining the Future of the Internal Combustion Engine for Ground Transport in the Current Context. Applied Sciences, 7(10), 1001. doi:10.3390/app7101001 | es_ES |
dc.description.references | Bermúdez, V., Serrano, J., Piqueras, P., & Sanchis, E. (2017). On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters. Applied Sciences, 7(3), 234. doi:10.3390/app7030234 | es_ES |
dc.description.references | Takeda, Y., Keiichi, N., & Keiichi, N. (1996). Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Staged Fuel Injection. SAE Technical Paper Series. doi:10.4271/961163 | es_ES |
dc.description.references | Hasegawa, R., & Yanagihara, H. (2003). HCCI Combustion in DI Diesel Engine. SAE Technical Paper Series. doi:10.4271/2003-01-0745 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., García, A., & Mónico, L. F. (2013). Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines. Applied Energy, 104, 149-157. doi:10.1016/j.apenergy.2012.11.040 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Novella, R., Gomez-Soriano, J., & Mónico, L. F. (2017). Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines. Energy, 137, 58-68. doi:10.1016/j.energy.2017.07.010 | es_ES |
dc.description.references | Boyarski, N. J., & Reitz, R. D. (2006). Premixed Compression Ignition (PCI) Combustion with Modeling-Generated Piston Bowl Geometry in a Diesel Engine. SAE Technical Paper Series. doi:10.4271/2006-01-0198 | es_ES |
dc.description.references | Okude, K., Mori, K., Shiino, S., & Moriya, T. (2004). Premixed Compression Ignition (PCI) Combustion for Simultaneous Reduction of NOx and Soot in Diesel Engine. SAE Technical Paper Series. doi:10.4271/2004-01-1907 | es_ES |
dc.description.references | Wang, Z., Liu, H., & Reitz, R. D. (2017). Knocking combustion in spark-ignition engines. Progress in Energy and Combustion Science, 61, 78-112. doi:10.1016/j.pecs.2017.03.004 | es_ES |
dc.description.references | Hanson, R., Splitter, D., & Reitz, R. D. (2009). Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine with Gasoline for Low Emissions. SAE Technical Paper Series. doi:10.4271/2009-01-1442 | es_ES |
dc.description.references | Manente, V., Johansson, B., Tunestal, P., & Cannella, W. (2009). Effects of Different Type of Gasoline Fuels on Heavy Duty Partially Premixed Combustion. SAE International Journal of Engines, 2(2), 71-88. doi:10.4271/2009-01-2668 | es_ES |
dc.description.references | Lewander, M., Johansson, B., & Tunestal, P. (2011). Investigation and Comparison of Multi Cylinder Partially Premixed Combustion Characteristics for Diesel and Gasoline Fuels. SAE Technical Paper Series. doi:10.4271/2011-01-1811 | es_ES |
dc.description.references | Tribotte, P., Ravet, F., Dugue, V., Obernesser, P., Quechon, N., Benajes, J., … De Lima, D. (2012). Two Strokes Diesel Engine - Promising Solution to Reduce CO2 Emissions. Procedia - Social and Behavioral Sciences, 48, 2295-2314. doi:10.1016/j.sbspro.2012.06.1202 | es_ES |
dc.description.references | Laget, O., Ternel, C., Thiriot, J., Charmasson, S., Tribotté, P., & Vidal, F. (2013). Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car. SAE International Journal of Engines, 6(1), 596-613. doi:10.4271/2013-01-1719 | es_ES |
dc.description.references | Benajes, J., Novella, R., De Lima, D., Tribotté, P., Quechon, N., Obernesser, P., & Dugue, V. (2013). Analysis of the combustion process, pollutant emissions and efficiency of an innovative 2-stroke HSDI engine designed for automotive applications. Applied Thermal Engineering, 58(1-2), 181-193. doi:10.1016/j.applthermaleng.2013.03.050 | es_ES |
dc.description.references | Benajes, J., Molina, S., Novella, R., & De Lima, D. (2014). Implementation of the Partially Premixed Combustion concept in a 2-stroke HSDI diesel engine fueled with gasoline. Applied Energy, 122, 94-111. doi:10.1016/j.apenergy.2014.02.013 | es_ES |
dc.description.references | Pal, P., Keum, S., & Im, H. G. (2015). Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines. International Journal of Engine Research, 17(3), 280-290. doi:10.1177/1468087415571006 | es_ES |
dc.description.references | Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452 | es_ES |
dc.description.references | Wilcox, D. C. (2008). Formulation of the k-w Turbulence Model Revisited. AIAA Journal, 46(11), 2823-2838. doi:10.2514/1.36541 | es_ES |
dc.description.references | Chen, J. H., Hawkes, E. R., Sankaran, R., Mason, S. D., & Im, H. G. (2006). Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities. Combustion and Flame, 145(1-2), 128-144. doi:10.1016/j.combustflame.2005.09.017 | es_ES |
dc.description.references | Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035 | es_ES |
dc.description.references | Pillai, A. L., & Kurose, R. (2018). Numerical investigation of combustion noise in an open turbulent spray flame. Applied Acoustics, 133, 16-27. doi:10.1016/j.apacoust.2017.11.025 | es_ES |
dc.description.references | Misdariis, A., Vermorel, O., & Poinsot, T. (2015). LES of knocking in engines using dual heat transfer and two-step reduced schemes. Combustion and Flame, 162(11), 4304-4312. doi:10.1016/j.combustflame.2015.07.023 | es_ES |
dc.description.references | Broatch, A., Javier Lopez, J., García-Tíscar, J., & Gomez-Soriano, J. (2018). Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling. Journal of Engineering for Gas Turbines and Power, 140(10). doi:10.1115/1.4040287 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Gil, A., & Gomez-Soriano, J. (2018). Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Applied Acoustics, 135, 91-100. doi:10.1016/j.apacoust.2018.02.006 | es_ES |
dc.description.references | Benajes, J., Broatch, A., Garcia, A., & Monico Muñoz, L. (2013). An Experimental Investigation of Diesel-Gasoline Blends Effects in a Direct-Injection Compression-Ignition Engine Operating in PCCI Conditions. SAE Technical Paper Series. doi:10.4271/2013-01-1676 | es_ES |
dc.description.references | Benajes, J., Novella, R., De Lima, D., & Tribotte, P. (2015). Investigation on Multiple Injection Strategies for Gasoline PPC Operation in a Newly Designed 2-Stroke HSDI Compression Ignition Engine. SAE International Journal of Engines, 8(2), 758-774. doi:10.4271/2015-01-0830 | es_ES |
dc.description.references | Benajes, J., García, A., Domenech, V., & Durrett, R. (2013). An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Applied Thermal Engineering, 52(2), 468-477. doi:10.1016/j.applthermaleng.2012.12.025 | es_ES |
dc.description.references | Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., & Veynante, D. (2009). Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES. Combustion and Flame, 156(8), 1525-1541. doi:10.1016/j.combustflame.2009.04.007 | es_ES |
dc.description.references | Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., & Veynante, D. (2007). Multi-Cycle LES Simulations of Flow and Combustion in a PFI SI 4-Valve Production Engine. SAE Technical Paper Series. doi:10.4271/2007-01-0151 | es_ES |
dc.description.references | Granet, V., Vermorel, O., Lacour, C., Enaux, B., Dugué, V., & Poinsot, T. (2012). Large-Eddy Simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine. Combustion and Flame, 159(4), 1562-1575. doi:10.1016/j.combustflame.2011.11.018 | es_ES |
dc.description.references | Cyclic dispersion in engine combustion—Introduction by the special issue editors. (2015). International Journal of Engine Research, 16(3), 255-259. doi:10.1177/1468087415572740 | es_ES |
dc.description.references | Klos, D., & Kokjohn, S. L. (2014). Investigation of the sources of combustion instability in low-temperature combustion engines using response surface models. International Journal of Engine Research, 16(3), 419-440. doi:10.1177/1468087414556135 | es_ES |
dc.description.references | Jia, M., Dempsey, A. B., Wang, H., Li, Y., & Reitz, R. D. (2014). Numerical simulation of cyclic variability in reactivity-controlled compression ignition combustion with a focus on the initial temperature at intake valve closing. International Journal of Engine Research, 16(3), 441-460. doi:10.1177/1468087414552088 | es_ES |
dc.description.references | Angelberger, C., Poinsot, T., & Delhay, B. (1997). Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations. SAE Technical Paper Series. doi:10.4271/972881 | es_ES |
dc.description.references | Senecal, P. K., Pomraning, E., Richards, K. J., Briggs, T. E., Choi, C. Y., Mcdavid, R. M., & Patterson, M. A. (2003). Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry. SAE Technical Paper Series. doi:10.4271/2003-01-1043 | es_ES |
dc.description.references | Babajimopoulos, A., Assanis, D. N., Flowers, D. L., Aceves, S. M., & Hessel, R. P. (2005). A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines. International Journal of Engine Research, 6(5), 497-512. doi:10.1243/146808705x30503 | es_ES |
dc.description.references | Pal, P., Probst, D., Pei, Y., Zhang, Y., Traver, M., Cleary, D., & Som, S. (2017). Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis. SAE International Journal of Fuels and Lubricants, 10(1), 56-68. doi:10.4271/2017-01-0578 | es_ES |
dc.description.references | Brakora, J., & Reitz, R. D. (2013). A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations. SAE Technical Paper Series. doi:10.4271/2013-01-1099 | es_ES |
dc.description.references | Kodavasal, J., Kolodziej, C. P., Ciatti, S. A., & Som, S. (2015). Computational Fluid Dynamics Simulation of Gasoline Compression Ignition. Journal of Energy Resources Technology, 137(3). doi:10.1115/1.4029963 | es_ES |
dc.description.references | Benajes, J., Novella, R., De Lima, D., & Thein, K. (2017). Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine. Applied Energy, 193, 515-530. doi:10.1016/j.apenergy.2017.02.044 | es_ES |
dc.description.references | Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229-253. doi:10.1016/0021-9991(80)90087-x | es_ES |
dc.description.references | Reitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40 | es_ES |
dc.description.references | PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009 | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x | es_ES |
dc.description.references | Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., García-Tíscar, J., & Gomez-Soriano, J. (2018). Modal decomposition of the unsteady flow field in compression-ignited combustion chambers. Combustion and Flame, 188, 469-482. doi:10.1016/j.combustflame.2017.10.007 | es_ES |
dc.description.references | Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081 | es_ES |