- -

Computational Methodology for Knocking Combustion Analysis in Compression-Ignited Advanced Concepts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational Methodology for Knocking Combustion Analysis in Compression-Ignited Advanced Concepts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano, J.R. es_ES
dc.contributor.author Novella Rosa, Ricardo es_ES
dc.contributor.author Gómez-Soriano, Josep es_ES
dc.contributor.author Martínez-Hernándiz, Pablo José es_ES
dc.date.accessioned 2020-06-12T03:33:05Z
dc.date.available 2020-06-12T03:33:05Z
dc.date.issued 2018-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146159
dc.description.abstract [EN] In the present work, a numerical methodology based on three-dimensional (3D) computational fluid dynamics (CFD) was developed to predict knock in a 2-Stroke engine operating with gasoline Partially Premixed Combustion (PPC) concept. Single-cycle Unsteady Reynolds-Averaged Navier Stokes (URANS) simulations using the renormalization group (RNG) k - epsilon model were performed in parallel while the initial conditions are accordingly perturbed in order to imitate the variability in the in-cylinder conditions due to engine operation. Results showed a good agreement between experiment and CFD simulation with respect to cycle-averaged and deviation of the ignition timing, combustion phasing, peak pressure magnitude and location. Moreover, the numerical method was also demonstrated to be capable of predicting knock features, such as maximum pressure rise rate and knock intensity, with good accuracy. Finally, the CFD solution allowed to give more insight about in-cylinder processes that lead to the knocking combustion and its subsequent effects. es_ES
dc.description.sponsorship The work has been partially supported by the Spanish Ministerio de Economia y Competitividad through grant number TRA2016-79185-R. The equipment used in this work has been partially supported by FEDER project funds "Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT), (FEDER-ICTS-2012-06)" from the operational program of unique scientific and technical infrastructure of the Spanish Ministerio de Economia y Competitividad. In addition, J. Gomez-Soriano is partially supported by an FPI contract (FPI-S2-2016-1353) of the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-16)" of the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Gasoline PPC concept es_ES
dc.subject 2-stroke engine es_ES
dc.subject Knocking combustion es_ES
dc.subject CFD modelling es_ES
dc.subject Cycle-to-cycle variation es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Computational Methodology for Knocking Combustion Analysis in Compression-Ignited Advanced Concepts es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app8101707 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-S2-2016-1353/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2016-79185-R/ES/DESARROLLO DE HERRAMIENTAS EXPERIMENTALES Y COMPUTACIONALES PARA LA CARACTERIZACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE EN MOTORES DE ENCENDIDO POR COMPRESION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-16/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Serrano, J.; Novella Rosa, R.; Gómez-Soriano, J.; Martínez-Hernándiz, PJ. (2018). Computational Methodology for Knocking Combustion Analysis in Compression-Ignited Advanced Concepts. Applied Sciences. 8(10):1-13. https://doi.org/10.3390/app8101707 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app8101707 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\377378 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Serrano, J. (2017). Imagining the Future of the Internal Combustion Engine for Ground Transport in the Current Context. Applied Sciences, 7(10), 1001. doi:10.3390/app7101001 es_ES
dc.description.references Bermúdez, V., Serrano, J., Piqueras, P., & Sanchis, E. (2017). On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters. Applied Sciences, 7(3), 234. doi:10.3390/app7030234 es_ES
dc.description.references Takeda, Y., Keiichi, N., & Keiichi, N. (1996). Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Staged Fuel Injection. SAE Technical Paper Series. doi:10.4271/961163 es_ES
dc.description.references Hasegawa, R., & Yanagihara, H. (2003). HCCI Combustion in DI Diesel Engine. SAE Technical Paper Series. doi:10.4271/2003-01-0745 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., García, A., & Mónico, L. F. (2013). Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines. Applied Energy, 104, 149-157. doi:10.1016/j.apenergy.2012.11.040 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Novella, R., Gomez-Soriano, J., & Mónico, L. F. (2017). Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines. Energy, 137, 58-68. doi:10.1016/j.energy.2017.07.010 es_ES
dc.description.references Boyarski, N. J., & Reitz, R. D. (2006). Premixed Compression Ignition (PCI) Combustion with Modeling-Generated Piston Bowl Geometry in a Diesel Engine. SAE Technical Paper Series. doi:10.4271/2006-01-0198 es_ES
dc.description.references Okude, K., Mori, K., Shiino, S., & Moriya, T. (2004). Premixed Compression Ignition (PCI) Combustion for Simultaneous Reduction of NOx and Soot in Diesel Engine. SAE Technical Paper Series. doi:10.4271/2004-01-1907 es_ES
dc.description.references Wang, Z., Liu, H., & Reitz, R. D. (2017). Knocking combustion in spark-ignition engines. Progress in Energy and Combustion Science, 61, 78-112. doi:10.1016/j.pecs.2017.03.004 es_ES
dc.description.references Hanson, R., Splitter, D., & Reitz, R. D. (2009). Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine with Gasoline for Low Emissions. SAE Technical Paper Series. doi:10.4271/2009-01-1442 es_ES
dc.description.references Manente, V., Johansson, B., Tunestal, P., & Cannella, W. (2009). Effects of Different Type of Gasoline Fuels on Heavy Duty Partially Premixed Combustion. SAE International Journal of Engines, 2(2), 71-88. doi:10.4271/2009-01-2668 es_ES
dc.description.references Lewander, M., Johansson, B., & Tunestal, P. (2011). Investigation and Comparison of Multi Cylinder Partially Premixed Combustion Characteristics for Diesel and Gasoline Fuels. SAE Technical Paper Series. doi:10.4271/2011-01-1811 es_ES
dc.description.references Tribotte, P., Ravet, F., Dugue, V., Obernesser, P., Quechon, N., Benajes, J., … De Lima, D. (2012). Two Strokes Diesel Engine - Promising Solution to Reduce CO2 Emissions. Procedia - Social and Behavioral Sciences, 48, 2295-2314. doi:10.1016/j.sbspro.2012.06.1202 es_ES
dc.description.references Laget, O., Ternel, C., Thiriot, J., Charmasson, S., Tribotté, P., & Vidal, F. (2013). Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car. SAE International Journal of Engines, 6(1), 596-613. doi:10.4271/2013-01-1719 es_ES
dc.description.references Benajes, J., Novella, R., De Lima, D., Tribotté, P., Quechon, N., Obernesser, P., & Dugue, V. (2013). Analysis of the combustion process, pollutant emissions and efficiency of an innovative 2-stroke HSDI engine designed for automotive applications. Applied Thermal Engineering, 58(1-2), 181-193. doi:10.1016/j.applthermaleng.2013.03.050 es_ES
dc.description.references Benajes, J., Molina, S., Novella, R., & De Lima, D. (2014). Implementation of the Partially Premixed Combustion concept in a 2-stroke HSDI diesel engine fueled with gasoline. Applied Energy, 122, 94-111. doi:10.1016/j.apenergy.2014.02.013 es_ES
dc.description.references Pal, P., Keum, S., & Im, H. G. (2015). Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines. International Journal of Engine Research, 17(3), 280-290. doi:10.1177/1468087415571006 es_ES
dc.description.references Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452 es_ES
dc.description.references Wilcox, D. C. (2008). Formulation of the k-w Turbulence Model Revisited. AIAA Journal, 46(11), 2823-2838. doi:10.2514/1.36541 es_ES
dc.description.references Chen, J. H., Hawkes, E. R., Sankaran, R., Mason, S. D., & Im, H. G. (2006). Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities. Combustion and Flame, 145(1-2), 128-144. doi:10.1016/j.combustflame.2005.09.017 es_ES
dc.description.references Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035 es_ES
dc.description.references Pillai, A. L., & Kurose, R. (2018). Numerical investigation of combustion noise in an open turbulent spray flame. Applied Acoustics, 133, 16-27. doi:10.1016/j.apacoust.2017.11.025 es_ES
dc.description.references Misdariis, A., Vermorel, O., & Poinsot, T. (2015). LES of knocking in engines using dual heat transfer and two-step reduced schemes. Combustion and Flame, 162(11), 4304-4312. doi:10.1016/j.combustflame.2015.07.023 es_ES
dc.description.references Broatch, A., Javier Lopez, J., García-Tíscar, J., & Gomez-Soriano, J. (2018). Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling. Journal of Engineering for Gas Turbines and Power, 140(10). doi:10.1115/1.4040287 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Gil, A., & Gomez-Soriano, J. (2018). Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Applied Acoustics, 135, 91-100. doi:10.1016/j.apacoust.2018.02.006 es_ES
dc.description.references Benajes, J., Broatch, A., Garcia, A., & Monico Muñoz, L. (2013). An Experimental Investigation of Diesel-Gasoline Blends Effects in a Direct-Injection Compression-Ignition Engine Operating in PCCI Conditions. SAE Technical Paper Series. doi:10.4271/2013-01-1676 es_ES
dc.description.references Benajes, J., Novella, R., De Lima, D., & Tribotte, P. (2015). Investigation on Multiple Injection Strategies for Gasoline PPC Operation in a Newly Designed 2-Stroke HSDI Compression Ignition Engine. SAE International Journal of Engines, 8(2), 758-774. doi:10.4271/2015-01-0830 es_ES
dc.description.references Benajes, J., García, A., Domenech, V., & Durrett, R. (2013). An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Applied Thermal Engineering, 52(2), 468-477. doi:10.1016/j.applthermaleng.2012.12.025 es_ES
dc.description.references Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., & Veynante, D. (2009). Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES. Combustion and Flame, 156(8), 1525-1541. doi:10.1016/j.combustflame.2009.04.007 es_ES
dc.description.references Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., & Veynante, D. (2007). Multi-Cycle LES Simulations of Flow and Combustion in a PFI SI 4-Valve Production Engine. SAE Technical Paper Series. doi:10.4271/2007-01-0151 es_ES
dc.description.references Granet, V., Vermorel, O., Lacour, C., Enaux, B., Dugué, V., & Poinsot, T. (2012). Large-Eddy Simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine. Combustion and Flame, 159(4), 1562-1575. doi:10.1016/j.combustflame.2011.11.018 es_ES
dc.description.references Cyclic dispersion in engine combustion—Introduction by the special issue editors. (2015). International Journal of Engine Research, 16(3), 255-259. doi:10.1177/1468087415572740 es_ES
dc.description.references Klos, D., & Kokjohn, S. L. (2014). Investigation of the sources of combustion instability in low-temperature combustion engines using response surface models. International Journal of Engine Research, 16(3), 419-440. doi:10.1177/1468087414556135 es_ES
dc.description.references Jia, M., Dempsey, A. B., Wang, H., Li, Y., & Reitz, R. D. (2014). Numerical simulation of cyclic variability in reactivity-controlled compression ignition combustion with a focus on the initial temperature at intake valve closing. International Journal of Engine Research, 16(3), 441-460. doi:10.1177/1468087414552088 es_ES
dc.description.references Angelberger, C., Poinsot, T., & Delhay, B. (1997). Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations. SAE Technical Paper Series. doi:10.4271/972881 es_ES
dc.description.references Senecal, P. K., Pomraning, E., Richards, K. J., Briggs, T. E., Choi, C. Y., Mcdavid, R. M., & Patterson, M. A. (2003). Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry. SAE Technical Paper Series. doi:10.4271/2003-01-1043 es_ES
dc.description.references Babajimopoulos, A., Assanis, D. N., Flowers, D. L., Aceves, S. M., & Hessel, R. P. (2005). A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines. International Journal of Engine Research, 6(5), 497-512. doi:10.1243/146808705x30503 es_ES
dc.description.references Pal, P., Probst, D., Pei, Y., Zhang, Y., Traver, M., Cleary, D., & Som, S. (2017). Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis. SAE International Journal of Fuels and Lubricants, 10(1), 56-68. doi:10.4271/2017-01-0578 es_ES
dc.description.references Brakora, J., & Reitz, R. D. (2013). A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations. SAE Technical Paper Series. doi:10.4271/2013-01-1099 es_ES
dc.description.references Kodavasal, J., Kolodziej, C. P., Ciatti, S. A., & Som, S. (2015). Computational Fluid Dynamics Simulation of Gasoline Compression Ignition. Journal of Energy Resources Technology, 137(3). doi:10.1115/1.4029963 es_ES
dc.description.references Benajes, J., Novella, R., De Lima, D., & Thein, K. (2017). Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine. Applied Energy, 193, 515-530. doi:10.1016/j.apenergy.2017.02.044 es_ES
dc.description.references Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229-253. doi:10.1016/0021-9991(80)90087-x es_ES
dc.description.references Reitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40 es_ES
dc.description.references PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009 es_ES
dc.description.references Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x es_ES
dc.description.references Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., García-Tíscar, J., & Gomez-Soriano, J. (2018). Modal decomposition of the unsteady flow field in compression-ignited combustion chambers. Combustion and Flame, 188, 469-482. doi:10.1016/j.combustflame.2017.10.007 es_ES
dc.description.references Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem