- -

Proper Generalized Decomposition solutions within a Domain Decomposition strategy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Proper Generalized Decomposition solutions within a Domain Decomposition strategy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Huerta, Antonio es_ES
dc.contributor.author Nadal, Enrique es_ES
dc.contributor.author Chinesta Soria, Francisco Jose es_ES
dc.date.accessioned 2020-06-12T03:34:22Z
dc.date.available 2020-06-12T03:34:22Z
dc.date.issued 2018-03-30 es_ES
dc.identifier.issn 0029-5981 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146190
dc.description "This is the peer reviewed version of the following article: Huerta, Antonio, Enrique Nadal, and Francisco Chinesta. 2018. Proper Generalized Decomposition Solutions within a Domain Decomposition Strategy. International Journal for Numerical Methods in Engineering 113 (13). Wiley: 1972 94. doi:10.1002/nme.5729, which has been published in final form at https://doi.org/10.1002/nme.5729. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] Domain decomposition strategies and proper generalized decomposition are efficiently combined to obtain a fast evaluation of the solution approximation in parameterized elliptic problems with complex geometries. The classical difficulties associated to the combination of layered domains with arbitrarily oriented midsurfaces, which may require in-plane-out-of-plane techniques, are now dismissed. More generally, solutions on large domains can now be confronted within a domain decomposition approach. This is done with a reduced cost in the offline phase because the proper generalized decomposition gives an explicit description of the solution in each subdomain in terms of the solution at the interface. Thus, the evaluation of the approximation in each subdomain is a simple function evaluation given the interface values (and the other problem parameters). The interface solution can be characterized by any a priori user-defined approximation. Here, for illustration purposes, hierarchical polynomials are used. The repetitiveness of the subdomains is exploited to reduce drastically the offline computational effort. The online phase requires solving a nonlinear problem to determine all the interface solutions. However, this problem only has degrees of freedom on the interfaces and the Jacobian matrix is explicitly determined. Obviously, other parameters characterizing the solution (material constants, external loads, and geometry) can also be incorporated in the explicit description of the solution. es_ES
dc.description.sponsorship European Commission, Grant/Award Number: MSCA ITN-ETN 675919; ESI group, Grant/Award Number: ENSAM ESI Chair; Spanish Ministry of Economy and Competitiveness, Grant/Award Number: DPI2017-85139-C2-2-R; Generalitat de Catalunya, Grant/Award Number: 2014SGR1471 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof International Journal for Numerical Methods in Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Domain decomposition es_ES
dc.subject Parameterized solutions es_ES
dc.subject Proper generalized decomposition es_ES
dc.subject Reduced-order models es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Proper Generalized Decomposition solutions within a Domain Decomposition strategy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/nme.5729 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/675919/EU/Empowered decision-making in simulation-based engineering: Advanced Model Reduction for real-time, inverse and optimization in industrial problems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-85139-C2-2-R/ES/ASIMILACION DE DATOS PARA UNA SIMULACION INGENIERIL CREIBLE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 1471/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Huerta, A.; Nadal, E.; Chinesta Soria, FJ. (2018). Proper Generalized Decomposition solutions within a Domain Decomposition strategy. International Journal for Numerical Methods in Engineering. 113(13):1972-1994. https://doi.org/10.1002/nme.5729 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/nme.5729 es_ES
dc.description.upvformatpinicio 1972 es_ES
dc.description.upvformatpfin 1994 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 113 es_ES
dc.description.issue 13 es_ES
dc.relation.pasarela S\350044 es_ES
dc.contributor.funder ESI group es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Ammar, A., Mokdad, B., Chinesta, F., & Keunings, R. (2006). A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics, 139(3), 153-176. doi:10.1016/j.jnnfm.2006.07.007 es_ES
dc.description.references Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x es_ES
dc.description.references Chinesta, F., Cueto, E., & Huerta, A. (2014). PGD for solving multidimensional and parametric models. CISM International Centre for Mechanical Sciences, 27-89. doi:10.1007/978-3-7091-1794-1_2 es_ES
dc.description.references Chinesta, F., Keunings, R., & Leygue, A. (2014). The Proper Generalized Decomposition for Advanced Numerical Simulations. SpringerBriefs in Applied Sciences and Technology. doi:10.1007/978-3-319-02865-1 es_ES
dc.description.references González, D., Ammar, A., Chinesta, F., & Cueto, E. (2009). Recent advances on the use of separated representations. International Journal for Numerical Methods in Engineering, n/a-n/a. doi:10.1002/nme.2710 es_ES
dc.description.references Ghnatios, C., Chinesta, F., & Binetruy, C. (2013). 3D Modeling of squeeze flows occurring in composite laminates. International Journal of Material Forming, 8(1), 73-83. doi:10.1007/s12289-013-1149-4 es_ES
dc.description.references Bognet, B., Bordeu, F., Chinesta, F., Leygue, A., & Poitou, A. (2012). Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Computer Methods in Applied Mechanics and Engineering, 201-204, 1-12. doi:10.1016/j.cma.2011.08.025 es_ES
dc.description.references Bognet, B., Leygue, A., & Chinesta, F. (2014). Separated representations of 3D elastic solutions in shell geometries. Advanced Modeling and Simulation in Engineering Sciences, 1(1), 4. doi:10.1186/2213-7467-1-4 es_ES
dc.description.references Ibáñez, R., Abisset-Chavanne, E., Chinesta, F., & Huerta, A. (2016). Simulating squeeze flows in multiaxial laminates: towards fully 3D mixed formulations. International Journal of Material Forming, 10(5), 653-669. doi:10.1007/s12289-016-1309-4 es_ES
dc.description.references Toselli, A., & Widlund, O. B. (2005). Domain Decomposition Methods — Algorithms and Theory. Springer Series in Computational Mathematics. doi:10.1007/b137868 es_ES
dc.description.references Dolean, V., Jolivet, P., & Nataf, F. (2015). An Introduction to Domain Decomposition Methods. doi:10.1137/1.9781611974065 es_ES
dc.description.references Nazeer, S. M., Bordeu, F., Leygue, A., & Chinesta, F. (2014). Arlequin based PGD domain decomposition. Computational Mechanics, 54(5), 1175-1190. doi:10.1007/s00466-014-1048-7 es_ES
dc.description.references Krause, R. H., & Wohlmuth, B. I. (2002). A Dirichlet-Neumann type algorithm for contact problems with friction. Computing and Visualization in Science, 5(3), 139-148. doi:10.1007/s00791-002-0096-2 es_ES
dc.description.references Farhat, C., & Roux, F.-X. (1991). A method of finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering, 32(6), 1205-1227. doi:10.1002/nme.1620320604 es_ES
dc.description.references Nitsche, J. (1971). Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 36(1), 9-15. doi:10.1007/bf02995904 es_ES
dc.description.references Freud J Stenberg R On weakly imposed boundary conditions for second order problems 1995 Venice, Italy es_ES
dc.description.references Stenberg, R. (1995). On some techniques for approximating boundary conditions in the finite element method. Journal of Computational and Applied Mathematics, 63(1-3), 139-148. doi:10.1016/0377-0427(95)00057-7 es_ES
dc.description.references Becker, R., Hansbo, P., & Stenberg, R. (2003). A finite element method for domain decomposition with non-matching grids. ESAIM: Mathematical Modelling and Numerical Analysis, 37(2), 209-225. doi:10.1051/m2an:2003023 es_ES
dc.description.references Iapichino, L., Quarteroni, A., & Rozza, G. (2012). A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Computer Methods in Applied Mechanics and Engineering, 221-222, 63-82. doi:10.1016/j.cma.2012.02.005 es_ES
dc.description.references Eftang, J. L., & Patera, A. T. (2013). Port reduction in parametrized component static condensation: approximation and a posteriori error estimation. International Journal for Numerical Methods in Engineering, 96(5), 269-302. doi:10.1002/nme.4543 es_ES
dc.description.references Eftang, J. L., & Patera, A. T. (2014). A port-reduced static condensation reduced basis element method for large component-synthesized structures: approximation and A Posteriori error estimation. Advanced Modeling and Simulation in Engineering Sciences, 1(1), 3. doi:10.1186/2213-7467-1-3 es_ES
dc.description.references Vallaghé, S., & Patera, A. T. (2014). The Static Condensation Reduced Basis Element Method for a Mixed-Mean Conjugate Heat Exchanger Model. SIAM Journal on Scientific Computing, 36(3), B294-B320. doi:10.1137/120887709 es_ES
dc.description.references Martini, I., Rozza, G., & Haasdonk, B. (2014). Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system. Advances in Computational Mathematics, 41(5), 1131-1157. doi:10.1007/s10444-014-9396-6 es_ES
dc.description.references Smetana, K. (2015). A new certification framework for the port reduced static condensation reduced basis element method. Computer Methods in Applied Mechanics and Engineering, 283, 352-383. doi:10.1016/j.cma.2014.09.020 es_ES
dc.description.references Smetana, K., & Patera, A. T. (2016). Optimal Local Approximation Spaces for Component-Based Static Condensation Procedures. SIAM Journal on Scientific Computing, 38(5), A3318-A3356. doi:10.1137/15m1009603 es_ES
dc.description.references Iapichino, L., Quarteroni, A., & Rozza, G. (2016). Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries. Computers & Mathematics with Applications, 71(1), 408-430. doi:10.1016/j.camwa.2015.12.001 es_ES
dc.description.references Maday, Y., & Rønquist, E. M. (2002). Journal of Scientific Computing, 17(1/4), 447-459. doi:10.1023/a:1015197908587 es_ES
dc.description.references Phuong Huynh, D. B., Knezevic, D. J., & Patera, A. T. (2012). A Static condensation Reduced Basis Element method : approximation anda posteriorierror estimation. ESAIM: Mathematical Modelling and Numerical Analysis, 47(1), 213-251. doi:10.1051/m2an/2012022 es_ES
dc.description.references Ammar, A., Huerta, A., Chinesta, F., Cueto, E., & Leygue, A. (2014). Parametric solutions involving geometry: A step towards efficient shape optimization. Computer Methods in Applied Mechanics and Engineering, 268, 178-193. doi:10.1016/j.cma.2013.09.003 es_ES
dc.description.references Zlotnik, S., Díez, P., Modesto, D., & Huerta, A. (2015). Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications. International Journal for Numerical Methods in Engineering, 103(10), 737-758. doi:10.1002/nme.4909 es_ES
dc.description.references Montlaur, A., Fernandez‐Mendez, S., & Huerta, A. (2008). Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations. International Journal for Numerical Methods in Fluids, 57(9), 1071-1092. doi:10.1002/fld.1716 es_ES
dc.description.references Ciarlet, P. G. (2002). The Finite Element Method for Elliptic Problems. doi:10.1137/1.9780898719208 es_ES
dc.description.references Szabó, B., & Babuška, I. (2011). Introduction to Finite Element Analysis. doi:10.1002/9781119993834 es_ES
dc.description.references Rozza G Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications Separated Representations and PGD-Based Model Reduction CISM International Centre for Mechanical Sciences: Courses and Lectures 554 Vienna Springer 2014 153 227 es_ES
dc.description.references Ammar, A., Chinesta, F., Diez, P., & Huerta, A. (2010). An error estimator for separated representations of highly multidimensional models. Computer Methods in Applied Mechanics and Engineering, 199(25-28), 1872-1880. doi:10.1016/j.cma.2010.02.012 es_ES
dc.description.references Maday, Y., & Ronquist, E. M. (2004). The Reduced Basis Element Method: Application to a Thermal Fin Problem. SIAM Journal on Scientific Computing, 26(1), 240-258. doi:10.1137/s1064827502419932 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem