Mostrar el registro sencillo del ítem
dc.contributor.author | Huerta, Antonio | es_ES |
dc.contributor.author | Nadal, Enrique | es_ES |
dc.contributor.author | Chinesta Soria, Francisco Jose | es_ES |
dc.date.accessioned | 2020-06-12T03:34:22Z | |
dc.date.available | 2020-06-12T03:34:22Z | |
dc.date.issued | 2018-03-30 | es_ES |
dc.identifier.issn | 0029-5981 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146190 | |
dc.description | "This is the peer reviewed version of the following article: Huerta, Antonio, Enrique Nadal, and Francisco Chinesta. 2018. Proper Generalized Decomposition Solutions within a Domain Decomposition Strategy. International Journal for Numerical Methods in Engineering 113 (13). Wiley: 1972 94. doi:10.1002/nme.5729, which has been published in final form at https://doi.org/10.1002/nme.5729. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." | es_ES |
dc.description.abstract | [EN] Domain decomposition strategies and proper generalized decomposition are efficiently combined to obtain a fast evaluation of the solution approximation in parameterized elliptic problems with complex geometries. The classical difficulties associated to the combination of layered domains with arbitrarily oriented midsurfaces, which may require in-plane-out-of-plane techniques, are now dismissed. More generally, solutions on large domains can now be confronted within a domain decomposition approach. This is done with a reduced cost in the offline phase because the proper generalized decomposition gives an explicit description of the solution in each subdomain in terms of the solution at the interface. Thus, the evaluation of the approximation in each subdomain is a simple function evaluation given the interface values (and the other problem parameters). The interface solution can be characterized by any a priori user-defined approximation. Here, for illustration purposes, hierarchical polynomials are used. The repetitiveness of the subdomains is exploited to reduce drastically the offline computational effort. The online phase requires solving a nonlinear problem to determine all the interface solutions. However, this problem only has degrees of freedom on the interfaces and the Jacobian matrix is explicitly determined. Obviously, other parameters characterizing the solution (material constants, external loads, and geometry) can also be incorporated in the explicit description of the solution. | es_ES |
dc.description.sponsorship | European Commission, Grant/Award Number: MSCA ITN-ETN 675919; ESI group, Grant/Award Number: ENSAM ESI Chair; Spanish Ministry of Economy and Competitiveness, Grant/Award Number: DPI2017-85139-C2-2-R; Generalitat de Catalunya, Grant/Award Number: 2014SGR1471 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | International Journal for Numerical Methods in Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Domain decomposition | es_ES |
dc.subject | Parameterized solutions | es_ES |
dc.subject | Proper generalized decomposition | es_ES |
dc.subject | Reduced-order models | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Proper Generalized Decomposition solutions within a Domain Decomposition strategy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/nme.5729 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/675919/EU/Empowered decision-making in simulation-based engineering: Advanced Model Reduction for real-time, inverse and optimization in industrial problems/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-85139-C2-2-R/ES/ASIMILACION DE DATOS PARA UNA SIMULACION INGENIERIL CREIBLE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 1471/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Huerta, A.; Nadal, E.; Chinesta Soria, FJ. (2018). Proper Generalized Decomposition solutions within a Domain Decomposition strategy. International Journal for Numerical Methods in Engineering. 113(13):1972-1994. https://doi.org/10.1002/nme.5729 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/nme.5729 | es_ES |
dc.description.upvformatpinicio | 1972 | es_ES |
dc.description.upvformatpfin | 1994 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 113 | es_ES |
dc.description.issue | 13 | es_ES |
dc.relation.pasarela | S\350044 | es_ES |
dc.contributor.funder | ESI group | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Ammar, A., Mokdad, B., Chinesta, F., & Keunings, R. (2006). A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics, 139(3), 153-176. doi:10.1016/j.jnnfm.2006.07.007 | es_ES |
dc.description.references | Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x | es_ES |
dc.description.references | Chinesta, F., Cueto, E., & Huerta, A. (2014). PGD for solving multidimensional and parametric models. CISM International Centre for Mechanical Sciences, 27-89. doi:10.1007/978-3-7091-1794-1_2 | es_ES |
dc.description.references | Chinesta, F., Keunings, R., & Leygue, A. (2014). The Proper Generalized Decomposition for Advanced Numerical Simulations. SpringerBriefs in Applied Sciences and Technology. doi:10.1007/978-3-319-02865-1 | es_ES |
dc.description.references | González, D., Ammar, A., Chinesta, F., & Cueto, E. (2009). Recent advances on the use of separated representations. International Journal for Numerical Methods in Engineering, n/a-n/a. doi:10.1002/nme.2710 | es_ES |
dc.description.references | Ghnatios, C., Chinesta, F., & Binetruy, C. (2013). 3D Modeling of squeeze flows occurring in composite laminates. International Journal of Material Forming, 8(1), 73-83. doi:10.1007/s12289-013-1149-4 | es_ES |
dc.description.references | Bognet, B., Bordeu, F., Chinesta, F., Leygue, A., & Poitou, A. (2012). Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Computer Methods in Applied Mechanics and Engineering, 201-204, 1-12. doi:10.1016/j.cma.2011.08.025 | es_ES |
dc.description.references | Bognet, B., Leygue, A., & Chinesta, F. (2014). Separated representations of 3D elastic solutions in shell geometries. Advanced Modeling and Simulation in Engineering Sciences, 1(1), 4. doi:10.1186/2213-7467-1-4 | es_ES |
dc.description.references | Ibáñez, R., Abisset-Chavanne, E., Chinesta, F., & Huerta, A. (2016). Simulating squeeze flows in multiaxial laminates: towards fully 3D mixed formulations. International Journal of Material Forming, 10(5), 653-669. doi:10.1007/s12289-016-1309-4 | es_ES |
dc.description.references | Toselli, A., & Widlund, O. B. (2005). Domain Decomposition Methods — Algorithms and Theory. Springer Series in Computational Mathematics. doi:10.1007/b137868 | es_ES |
dc.description.references | Dolean, V., Jolivet, P., & Nataf, F. (2015). An Introduction to Domain Decomposition Methods. doi:10.1137/1.9781611974065 | es_ES |
dc.description.references | Nazeer, S. M., Bordeu, F., Leygue, A., & Chinesta, F. (2014). Arlequin based PGD domain decomposition. Computational Mechanics, 54(5), 1175-1190. doi:10.1007/s00466-014-1048-7 | es_ES |
dc.description.references | Krause, R. H., & Wohlmuth, B. I. (2002). A Dirichlet-Neumann type algorithm for contact problems with friction. Computing and Visualization in Science, 5(3), 139-148. doi:10.1007/s00791-002-0096-2 | es_ES |
dc.description.references | Farhat, C., & Roux, F.-X. (1991). A method of finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering, 32(6), 1205-1227. doi:10.1002/nme.1620320604 | es_ES |
dc.description.references | Nitsche, J. (1971). Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 36(1), 9-15. doi:10.1007/bf02995904 | es_ES |
dc.description.references | Freud J Stenberg R On weakly imposed boundary conditions for second order problems 1995 Venice, Italy | es_ES |
dc.description.references | Stenberg, R. (1995). On some techniques for approximating boundary conditions in the finite element method. Journal of Computational and Applied Mathematics, 63(1-3), 139-148. doi:10.1016/0377-0427(95)00057-7 | es_ES |
dc.description.references | Becker, R., Hansbo, P., & Stenberg, R. (2003). A finite element method for domain decomposition with non-matching grids. ESAIM: Mathematical Modelling and Numerical Analysis, 37(2), 209-225. doi:10.1051/m2an:2003023 | es_ES |
dc.description.references | Iapichino, L., Quarteroni, A., & Rozza, G. (2012). A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Computer Methods in Applied Mechanics and Engineering, 221-222, 63-82. doi:10.1016/j.cma.2012.02.005 | es_ES |
dc.description.references | Eftang, J. L., & Patera, A. T. (2013). Port reduction in parametrized component static condensation: approximation and a posteriori error estimation. International Journal for Numerical Methods in Engineering, 96(5), 269-302. doi:10.1002/nme.4543 | es_ES |
dc.description.references | Eftang, J. L., & Patera, A. T. (2014). A port-reduced static condensation reduced basis element method for large component-synthesized structures: approximation and A Posteriori error estimation. Advanced Modeling and Simulation in Engineering Sciences, 1(1), 3. doi:10.1186/2213-7467-1-3 | es_ES |
dc.description.references | Vallaghé, S., & Patera, A. T. (2014). The Static Condensation Reduced Basis Element Method for a Mixed-Mean Conjugate Heat Exchanger Model. SIAM Journal on Scientific Computing, 36(3), B294-B320. doi:10.1137/120887709 | es_ES |
dc.description.references | Martini, I., Rozza, G., & Haasdonk, B. (2014). Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system. Advances in Computational Mathematics, 41(5), 1131-1157. doi:10.1007/s10444-014-9396-6 | es_ES |
dc.description.references | Smetana, K. (2015). A new certification framework for the port reduced static condensation reduced basis element method. Computer Methods in Applied Mechanics and Engineering, 283, 352-383. doi:10.1016/j.cma.2014.09.020 | es_ES |
dc.description.references | Smetana, K., & Patera, A. T. (2016). Optimal Local Approximation Spaces for Component-Based Static Condensation Procedures. SIAM Journal on Scientific Computing, 38(5), A3318-A3356. doi:10.1137/15m1009603 | es_ES |
dc.description.references | Iapichino, L., Quarteroni, A., & Rozza, G. (2016). Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries. Computers & Mathematics with Applications, 71(1), 408-430. doi:10.1016/j.camwa.2015.12.001 | es_ES |
dc.description.references | Maday, Y., & Rønquist, E. M. (2002). Journal of Scientific Computing, 17(1/4), 447-459. doi:10.1023/a:1015197908587 | es_ES |
dc.description.references | Phuong Huynh, D. B., Knezevic, D. J., & Patera, A. T. (2012). A Static condensation Reduced Basis Element method : approximation anda posteriorierror estimation. ESAIM: Mathematical Modelling and Numerical Analysis, 47(1), 213-251. doi:10.1051/m2an/2012022 | es_ES |
dc.description.references | Ammar, A., Huerta, A., Chinesta, F., Cueto, E., & Leygue, A. (2014). Parametric solutions involving geometry: A step towards efficient shape optimization. Computer Methods in Applied Mechanics and Engineering, 268, 178-193. doi:10.1016/j.cma.2013.09.003 | es_ES |
dc.description.references | Zlotnik, S., Díez, P., Modesto, D., & Huerta, A. (2015). Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications. International Journal for Numerical Methods in Engineering, 103(10), 737-758. doi:10.1002/nme.4909 | es_ES |
dc.description.references | Montlaur, A., Fernandez‐Mendez, S., & Huerta, A. (2008). Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations. International Journal for Numerical Methods in Fluids, 57(9), 1071-1092. doi:10.1002/fld.1716 | es_ES |
dc.description.references | Ciarlet, P. G. (2002). The Finite Element Method for Elliptic Problems. doi:10.1137/1.9780898719208 | es_ES |
dc.description.references | Szabó, B., & Babuška, I. (2011). Introduction to Finite Element Analysis. doi:10.1002/9781119993834 | es_ES |
dc.description.references | Rozza G Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications Separated Representations and PGD-Based Model Reduction CISM International Centre for Mechanical Sciences: Courses and Lectures 554 Vienna Springer 2014 153 227 | es_ES |
dc.description.references | Ammar, A., Chinesta, F., Diez, P., & Huerta, A. (2010). An error estimator for separated representations of highly multidimensional models. Computer Methods in Applied Mechanics and Engineering, 199(25-28), 1872-1880. doi:10.1016/j.cma.2010.02.012 | es_ES |
dc.description.references | Maday, Y., & Ronquist, E. M. (2004). The Reduced Basis Element Method: Application to a Thermal Fin Problem. SIAM Journal on Scientific Computing, 26(1), 240-258. doi:10.1137/s1064827502419932 | es_ES |