- -

Optical switching in hybrid VO2/Si waveguides thermally triggered by lateral microheaters

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Optical switching in hybrid VO2/Si waveguides thermally triggered by lateral microheaters

Show full item record

Olivares-Sánchez-Mellado, I.; Sánchez Diana, LD.; Parra Gómez, J.; Larrea-Luzuriaga, RA.; Griol Barres, A.; Menghini, M.; Homm, P.... (2018). Optical switching in hybrid VO2/Si waveguides thermally triggered by lateral microheaters. Optics Express. 26(10):12387-12395. https://doi.org/10.1364/OE.26.012387

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146275

Files in this item

Item Metadata

Title: Optical switching in hybrid VO2/Si waveguides thermally triggered by lateral microheaters
Author: Olivares-Sánchez-Mellado, Irene Sánchez Diana, Luis David Parra Gómez, Jorge Larrea-Luzuriaga, Roberto Alejandro Griol Barres, Amadeu Menghini, Mariela Homm, Pia Jang, Lee-Woon van Bilzen, Bart Seo, Jin Won Locquet, Jean-Pierre Sanchis Kilders, Pablo
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Issued date:
Abstract:
[EN] The performance of optical devices relying in vanadium dioxide (VO2) technology compatible with the silicon platform depends on the polarization of light and VO2 properties. In this work, optical switching in hybrid ...[+]
Subjects: Optical switching devices , Waveguides , Photonic integrated circuits
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.26.012387
Publisher:
The Optical Society
Publisher version: https://doi.org/10.1364/OE.26.012387
Project ID:
info:eu-repo/grantAgreement/EC/FP7/619456/EU/Silicon CMOS compatible transition metal oxide technology for boosting highly integrated photonic devices with disruptive performance/
info:eu-repo/grantAgreement/MINECO//TEC2016-76849-C2-2-R/ES/DESARROLLO DE OXIDOS METALICOS DE TRANSICION CON TECNOLOGIA DE SILICIO PARA APLICACIONES DE CONMUTACION E INTERCONEXION OPTICAS EFICIENTES Y RESPETUOSAS CON EL MEDIO AMBIENTE/
Description: © 2018 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited"
Thanks:
Funding from project TEC2016-76849 (MINECO/FEDER, UE) is acknowledged. The SOI samples were fabricated at IHP (we acknowledge Lars Zimmermann) in the framework of FP7-ICT-2013-11-619456 SITOGA project. Irene Olivares and ...[+]
Type: Artículo

References

Sorger, V. J., Lanzillotti-Kimura, N. D., Ma, R.-M., & Zhang, X. (2012). Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics, 1(1), 17-22. doi:10.1515/nanoph-2012-0009

Liang, H., Soref, R., Mu, J., Majumdar, A., Li, X., & Huang, W.-P. (2015). Simulations of Silicon-on-Insulator Channel-Waveguide Electrooptical 2 × 2 Switches and 1 × 1 Modulators Using a ${\bf Ge_2}{\bf Sb_2}{\bf Te_5}$ Self-Holding Layer. Journal of Lightwave Technology, 33(9), 1805-1813. doi:10.1109/jlt.2015.2393293

Seo, G., Kim, B.-J., Ko, C., Cui, Y., Lee, Y. W., Shin, J.-H., … Kim, H.-T. (2011). Voltage-Pulse-Induced Switching Dynamics in $ \hbox{VO}_{2}$ Thin-Film Devices on Silicon. IEEE Electron Device Letters, 32(11), 1582-1584. doi:10.1109/led.2011.2163922 [+]
Sorger, V. J., Lanzillotti-Kimura, N. D., Ma, R.-M., & Zhang, X. (2012). Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics, 1(1), 17-22. doi:10.1515/nanoph-2012-0009

Liang, H., Soref, R., Mu, J., Majumdar, A., Li, X., & Huang, W.-P. (2015). Simulations of Silicon-on-Insulator Channel-Waveguide Electrooptical 2 × 2 Switches and 1 × 1 Modulators Using a ${\bf Ge_2}{\bf Sb_2}{\bf Te_5}$ Self-Holding Layer. Journal of Lightwave Technology, 33(9), 1805-1813. doi:10.1109/jlt.2015.2393293

Seo, G., Kim, B.-J., Ko, C., Cui, Y., Lee, Y. W., Shin, J.-H., … Kim, H.-T. (2011). Voltage-Pulse-Induced Switching Dynamics in $ \hbox{VO}_{2}$ Thin-Film Devices on Silicon. IEEE Electron Device Letters, 32(11), 1582-1584. doi:10.1109/led.2011.2163922

Yang, Z., Ko, C., & Ramanathan, S. (2011). Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions. Annual Review of Materials Research, 41(1), 337-367. doi:10.1146/annurev-matsci-062910-100347

Vitale, W. A., Casu, E. A., Biswas, A., Rosca, T., Alper, C., Krammer, A., … Ionescu, A. M. (2017). A Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor. Scientific Reports, 7(1). doi:10.1038/s41598-017-00359-6

Zimmers, A., Aigouy, L., Mortier, M., Sharoni, A., Wang, S., West, K. G., … Schuller, I. K. (2013). Role of Thermal Heating on the Voltage Induced Insulator-Metal Transition inVO2. Physical Review Letters, 110(5). doi:10.1103/physrevlett.110.056601

Kats, M. A., Blanchard, R., Genevet, P., Yang, Z., Qazilbash, M. M., Basov, D. N., … Capasso, F. (2013). Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Optics Letters, 38(3), 368. doi:10.1364/ol.38.000368

Chae, B.-G., Kim, H.-T., Youn, D.-H., & Kang, K.-Y. (2005). Abrupt metal–insulator transition observed in VO2 thin films induced by a switching voltage pulse. Physica B: Condensed Matter, 369(1-4), 76-80. doi:10.1016/j.physb.2005.07.032

Ruzmetov, D., Gopalakrishnan, G., Deng, J., Narayanamurti, V., & Ramanathan, S. (2009). Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions. Journal of Applied Physics, 106(8), 083702. doi:10.1063/1.3245338

Joushaghani, A., Jeong, J., Paradis, S., Alain, D., Stewart Aitchison, J., & Poon, J. K. S. (2014). Voltage-controlled switching and thermal effects in VO2 nano-gap junctions. Applied Physics Letters, 104(22), 221904. doi:10.1063/1.4881155

Markov, P., Marvel, R. E., Conley, H. J., Miller, K. J., Haglund, R. F., & Weiss, S. M. (2015). Optically Monitored Electrical Switching in VO2. ACS Photonics, 2(8), 1175-1182. doi:10.1021/acsphotonics.5b00244

Yang, Z., Hart, S., Ko, C., Yacoby, A., & Ramanathan, S. (2011). Studies on electric triggering of the metal-insulator transition in VO2thin films between 77 K and 300 K. Journal of Applied Physics, 110(3), 033725. doi:10.1063/1.3619806

Yoon, J., Lee, G., Park, C., Mun, B. S., & Ju, H. (2014). Investigation of length-dependent characteristics of the voltage-induced metal insulator transition in VO2 film devices. Applied Physics Letters, 105(8), 083503. doi:10.1063/1.4893783

Sánchez, L., Rosa, A., Griol, A., Gutierrez, A., Homm, P., Van Bilzen, B., … Sanchis, P. (2017). Impact of the external resistance on the switching power consumption in VO2 nano gap junctions. Applied Physics Letters, 111(3), 031904. doi:10.1063/1.4994326

Ryckman, J. D., Diez-Blanco, V., Nag, J., Marvel, R. E., Choi, B. K., Haglund, R. F., & Weiss, S. M. (2012). Photothermal optical modulation of ultra-compact hybrid Si-VO_2 ring resonators. Optics Express, 20(12), 13215. doi:10.1364/oe.20.013215

Ryckman, J. D., Hallman, K. A., Marvel, R. E., Haglund, R. F., & Weiss, S. M. (2013). Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition. Optics Express, 21(9), 10753. doi:10.1364/oe.21.010753

Abreu, E., Gilbert Corder, S. N., Yun, S. J., Wang, S., Ramírez, J. G., West, K., … Averitt, R. D. (2017). Ultrafast electron-lattice coupling dynamics in VO2 and V2O3 thin films. Physical Review B, 96(9). doi:10.1103/physrevb.96.094309

Sánchez, L., Lechago, S., & Sanchis, P. (2015). Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon. Optics Letters, 40(7), 1452. doi:10.1364/ol.40.001452

Joushaghani, A., Jeong, J., Paradis, S., Alain, D., Stewart Aitchison, J., & Poon, J. K. S. (2015). Wavelength-size hybrid Si-VO_2 waveguide electroabsorption optical switches and photodetectors. Optics Express, 23(3), 3657. doi:10.1364/oe.23.003657

Diana, L. D. S., Juan, F. C., Escutia, A. R., & Kilders, P. S. (2017). Ultra-compact electro-absorption VO2–Si modulator with TM to TE conversion. Journal of Optics, 19(3), 035401. doi:10.1088/2040-8986/aa5c06

Sanchez, L., Lechago, S., Gutierrez, A., & Sanchis, P. (2016). Analysis and Design Optimization of a Hybrid VO2/Silicon2 <inline-formula> <tex-math notation=«LaTeX»>$\times$</tex-math> </inline-formula> 2 Microring Switch. IEEE Photonics Journal, 8(2), 1-9. doi:10.1109/jphot.2016.2551463

Miller, K. J., Hallman, K. A., Haglund, R. F., & Weiss, S. M. (2017). Silicon waveguide optical switch with embedded phase change material. Optics Express, 25(22), 26527. doi:10.1364/oe.25.026527

Clark, J. K., Ho, Y.-L., Matsui, H., & Delaunay, J.-J. (2018). Optically Pumped Hybrid Plasmonic-Photonic Waveguide Modulator Using the VO2 Metal-Insulator Phase Transition. IEEE Photonics Journal, 10(1), 1-9. doi:10.1109/jphot.2017.2784429

Kumar, S., Pickett, M. D., Strachan, J. P., Gibson, G., Nishi, Y., & Williams, R. S. (2013). Local Temperature Redistribution and Structural Transition During Joule‐Heating‐Driven Conductance Switching in VO 2. Advanced Materials, 25(42), 6128-6132. doi:10.1002/adma.201302046

Simon Mun, B., Yoon, J., Mo, S.-K., Chen, K., Tamura, N., Dejoie, C., … Ju, H. (2013). Role of joule heating effect and bulk-surface phases in voltage-driven metal-insulator transition in VO2 crystal. Applied Physics Letters, 103(6), 061902. doi:10.1063/1.4817727

Freeman, E., Stone, G., Shukla, N., Paik, H., Moyer, J. A., Cai, Z., … Datta, S. (2013). Nanoscale structural evolution of electrically driven insulator to metal transition in vanadium dioxide. Applied Physics Letters, 103(26), 263109. doi:10.1063/1.4858468

Gopalakrishnan, G., Ruzmetov, D., & Ramanathan, S. (2009). On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects. Journal of Materials Science, 44(19), 5345-5353. doi:10.1007/s10853-009-3442-7

Leroy, J., Crunteanu, A., Bessaudou, A., Cosset, F., Champeaux, C., & Orlianges, J.-C. (2012). High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes. Applied Physics Letters, 100(21), 213507. doi:10.1063/1.4721520

Xu, X., He, X., Wang, H., Gu, Q., Shi, S., Xing, H., … Chu, J. (2012). The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures. Applied Surface Science, 261, 83-87. doi:10.1016/j.apsusc.2012.07.098

Kumar, S., Lenoble, D., Maury, F., & Bahlawane, N. (2015). Synthesis of vanadium oxide films with controlled morphologies: Impact on the metal-insulator transition behaviour. physica status solidi (a), 212(7), 1582-1587. doi:10.1002/pssa.201532325

Guzman, G., Morineau, R., & Livage, J. (1994). Synthesis of vanadium dioxide thin films from vanadium alkoxides. Materials Research Bulletin, 29(5), 509-515. doi:10.1016/0025-5408(94)90039-6

Gao, W., Wang, C. M., Wang, H. Q., Henrich, V. E., & Altman, E. I. (2004). Growth and surface structure of vanadium oxide on anatase (0 0 1). Surface Science, 559(2-3), 201-213. doi:10.1016/j.susc.2004.04.028

Peter, A. P., Martens, K., Rampelberg, G., Toeller, M., Ablett, J. M., Meersschaut, J., … Radu, I. P. (2014). Metal-Insulator Transition in ALD VO2Ultrathin Films and Nanoparticles: Morphological Control. Advanced Functional Materials, 25(5), 679-686. doi:10.1002/adfm.201402687

Rosa, Á., Gutiérrez, A., Brimont, A., Griol, A., & Sanchis, P. (2016). High performace silicon 2x2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes. Optics Express, 24(1), 191. doi:10.1364/oe.24.000191

Van Bilzen, B., Homm, P., Dillemans, L., Su, C.-Y., Menghini, M., Sousa, M., … Locquet, J.-P. (2015). Production of VO2 thin films through post-deposition annealing of V2O3 and VOx films. Thin Solid Films, 591, 143-148. doi:10.1016/j.tsf.2015.08.036

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record