Mostrar el registro sencillo del ítem
dc.contributor.author | Pereira, Luis | es_ES |
dc.contributor.author | Min, Rui | es_ES |
dc.contributor.author | Hu, Xuehao | es_ES |
dc.contributor.author | Caucheteur, Christophe | es_ES |
dc.contributor.author | Bang, Ole | es_ES |
dc.contributor.author | Ortega Tamarit, Beatriz | es_ES |
dc.contributor.author | Marques, Carlos | es_ES |
dc.contributor.author | Antunes, Paulo | es_ES |
dc.contributor.author | Pinto, João L. | es_ES |
dc.date.accessioned | 2020-06-13T03:33:15Z | |
dc.date.available | 2020-06-13T03:33:15Z | |
dc.date.issued | 2018-07-09 | es_ES |
dc.identifier.issn | 1094-4087 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146298 | |
dc.description | © 2018 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited" | es_ES |
dc.description.abstract | [EN] We experimentally demonstrate the first polymer optical fiber Bragg gratings inscribed with only one Nd: YAG laser (266 nm) pulse. The gratings have been inscribed in a single-mode poly (methyl methacrylate) optical fiber, with a core doped with benzyl dimethyl ketal for photosensitivity enhancement. One laser pulse with a duration of 8 ns and energy of 72 mu J is adequate to introduce a refractive index change of 0.5 x 10(-4) in the fiber core. The stability of the gratings has been confirmed and the strain and temperature sensitivity measurements demonstrate their tunable properties. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. | es_ES |
dc.description.sponsorship | FEDER funds through the COMPETE 2020 Programme, National Funds through FCT Portuguese Foundation for Science and Technology under the projects UID/CTM/50025/2013 and UID/EEA/50008/2013. C. Marques acknowledges the financial support from FCT through the fellowship SFRH/BPD/109458/2015. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Optical Society | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Fiber Bragg gratings | es_ES |
dc.subject | Polymers | es_ES |
dc.subject | Microstructured fibers | es_ES |
dc.subject | Fiber characterization | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.26.018096 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876/147333/PT/Institute of Nanostructures, Nanomodelling and Nanofabrication/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876/147328/PT/Instituto de Telecomunicações/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F109458%2F2015/PT/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Pereira, L.; Min, R.; Hu, X.; Caucheteur, C.; Bang, O.; Ortega Tamarit, B.; Marques, C.... (2018). Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse. Optics Express. 26(14):18096-18104. https://doi.org/10.1364/OE.26.018096 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/OE.26.018096 | es_ES |
dc.description.upvformatpinicio | 18096 | es_ES |
dc.description.upvformatpfin | 18104 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 14 | es_ES |
dc.identifier.pmid | 30114089 | es_ES |
dc.relation.pasarela | S\367459 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.description.references | Hill, K. O., Fujii, Y., Johnson, D. C., & Kawasaki, B. S. (1978). Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied Physics Letters, 32(10), 647-649. doi:10.1063/1.89881 | es_ES |
dc.description.references | Meltz, G., Morey, W. W., & Glenn, W. H. (1989). Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Letters, 14(15), 823. doi:10.1364/ol.14.000823 | es_ES |
dc.description.references | Hill, K. O., Malo, B., Bilodeau, F., Johnson, D. C., & Albert, J. (1993). Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Applied Physics Letters, 62(10), 1035-1037. doi:10.1063/1.108786 | es_ES |
dc.description.references | Qiu, Y., Sheng, Y., & Beaulieu, C. (1999). Optimal phase mask for fiber Bragg grating fabrication. Journal of Lightwave Technology, 17(11), 2366-2370. doi:10.1109/50.803032 | es_ES |
dc.description.references | Peters, K. (2010). Polymer optical fiber sensors—a review. Smart Materials and Structures, 20(1), 013002. doi:10.1088/0964-1726/20/1/013002 | es_ES |
dc.description.references | Abang, A., & Webb, D. J. (2013). Influence of mounting on the hysteresis of polymer fiber Bragg grating strain sensors. Optics Letters, 38(9), 1376. doi:10.1364/ol.38.001376 | es_ES |
dc.description.references | Pospori, A., Marques, C. A. F., Sáez-Rodríguez, D., Nielsen, K., Bang, O., & Webb, D. J. (2017). Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity. Optical Fiber Technology, 36, 68-74. doi:10.1016/j.yofte.2017.02.006 | es_ES |
dc.description.references | Chen, X., Zhang, C., Webb, D. J., Kalli, K., & Peng, G.-D. (2010). Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber. IEEE Photonics Technology Letters, 22(11), 850-852. doi:10.1109/lpt.2010.2046482 | es_ES |
dc.description.references | Prado, A. R., Leal-Junior, A. G., Marques, C., Leite, S., de Sena, G. L., Machado, L. C., … Pontes, M. J. (2017). Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems. Optics Express, 25(24), 30051. doi:10.1364/oe.25.030051 | es_ES |
dc.description.references | Marques, C. A. F., Peng, G.-D., & Webb, D. J. (2015). Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings. Optics Express, 23(5), 6058. doi:10.1364/oe.23.006058 | es_ES |
dc.description.references | Webb, D. J. (2015). Fibre Bragg grating sensors in polymer optical fibres. Measurement Science and Technology, 26(9), 092004. doi:10.1088/0957-0233/26/9/092004 | es_ES |
dc.description.references | Emiliyanov, G., Høiby, P., Pedersen, L., & Bang, O. (2013). Selective Serial Multi-Antibody Biosensing with TOPAS Microstructured Polymer Optical Fibers. Sensors, 13(3), 3242-3251. doi:10.3390/s130303242 | es_ES |
dc.description.references | Peng, G. D., Xiong, Z., & Chu, P. L. (1999). Photosensitivity and Gratings in Dye-Doped Polymer Optical Fibers. Optical Fiber Technology, 5(2), 242-251. doi:10.1006/ofte.1998.0298 | es_ES |
dc.description.references | Xiong, Z., Peng, G. D., Wu, B., & Chu, P. L. (1999). Highly tunable Bragg gratings in single-mode polymer optical fibers. IEEE Photonics Technology Letters, 11(3), 352-354. doi:10.1109/68.748232 | es_ES |
dc.description.references | G. D. Peng, P. L. Chu. (2000). Polymer Optical Fiber Photosensitivities and Highly Tunable Fiber Gratings. Fiber and Integrated Optics, 19(4), 277-293. doi:10.1080/014680300300001662 | es_ES |
dc.description.references | Oliveira, R., Bilro, L., & Nogueira, R. (2015). Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds. Optics Express, 23(8), 10181. doi:10.1364/oe.23.010181 | es_ES |
dc.description.references | Marques, C. A. F., Antunes, P., Mergo, P., Webb, D. J., & Andre, P. (2017). Chirped Bragg Gratings in PMMA Step-Index Polymer Optical Fiber. IEEE Photonics Technology Letters, 29(6), 500-503. doi:10.1109/lpt.2017.2662219 | es_ES |
dc.description.references | Pospori, A., Marques, C. A. F., Bang, O., Webb, D. J., & André, P. (2017). Polymer optical fiber Bragg grating inscription with a single UV laser pulse. Optics Express, 25(8), 9028. doi:10.1364/oe.25.009028 | es_ES |
dc.description.references | Ahmed, R. M. (2009). Optical Study on Poly(methyl methacrylate)/Poly(vinyl acetate) Blends. International Journal of Photoenergy, 2009, 1-7. doi:10.1155/2009/150389 | es_ES |
dc.description.references | Marques, C. A. F., Min, R., Junior, A. L., Antunes, P., Fasano, A., Woyessa, G., … Bang, O. (2018). Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser. Optics Express, 26(2), 2013. doi:10.1364/oe.26.002013 | es_ES |
dc.description.references | Wochnowski, C., Shams Eldin, M. A., & Metev, S. (2005). UV-laser-assisted degradation of poly(methyl methacrylate). Polymer Degradation and Stability, 89(2), 252-264. doi:10.1016/j.polymdegradstab.2004.11.024 | es_ES |
dc.description.references | Sáez-Rodríguez, D., Nielsen, K., Bang, O., & Webb, D. J. (2014). Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit. Optics Letters, 39(12), 3421. doi:10.1364/ol.39.003421 | es_ES |
dc.description.references | Marques, C. A. F., Bilro, L. B., Alberto, N. J., Webb, D. J., & Nogueira, R. N. (2013). Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows. Optics Communications, 307, 57-61. doi:10.1016/j.optcom.2013.05.059 | es_ES |
dc.description.references | Bundalo, I.-L., Nielsen, K., Markos, C., & Bang, O. (2014). Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes. Optics Express, 22(5), 5270. doi:10.1364/oe.22.005270 | es_ES |
dc.description.references | Pereira, L. M., Pospori, A., Antunes, P., Domingues, M. F., Marques, S., Bang, O., … Marques, C. A. F. (2017). Phase-Shifted Bragg Grating Inscription in PMMA Microstructured POF Using 248-nm UV Radiation. Journal of Lightwave Technology, 35(23), 5176-5184. doi:10.1109/jlt.2017.2771436 | es_ES |
dc.description.references | Min, R., Ortega, B., & Marques, C. (2018). Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask. Optics Express, 26(4), 4411. doi:10.1364/oe.26.004411 | es_ES |
dc.description.references | Luo, Y., Zhang, Q., Liu, H., & Peng, G.-D. (2010). Gratings fabrication in benzildimethylketal doped photosensitive polymer optical fibers using 355 nm nanosecond pulsed laser. Optics Letters, 35(5), 751. doi:10.1364/ol.35.000751 | es_ES |
dc.description.references | Kameyama, A. (2014). A Simplified Fabrication Technique for Tilted Fiber Bragg Grating for The Simultaneous Measurement of Refractive Index and Temperature of Liquids. Journal of Laser Micro/Nanoengineering, 9(3), 230-233. doi:10.2961/jlmn.2014.03.0009 | es_ES |
dc.description.references | Hu, X., Woyessa, G., Kinet, D., Janting, J., Nielsen, K., Bang, O., & Caucheteur, C. (2017). BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription. Optics Letters, 42(11), 2209. doi:10.1364/ol.42.002209 | es_ES |
dc.description.references | Stefani, A., Nielsen, K., Rasmussen, H. K., & Bang, O. (2012). Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization. Optics Communications, 285(7), 1825-1833. doi:10.1016/j.optcom.2011.12.033 | es_ES |
dc.description.references | Yuan, W., Stefani, A., Bache, M., Jacobsen, T., Rose, B., Herholdt-Rasmussen, N., … Bang, O. (2011). Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings. Optics Communications, 284(1), 176-182. doi:10.1016/j.optcom.2010.08.069 | es_ES |
dc.description.references | Woyessa, G., Nielsen, K., Stefani, A., Markos, C., & Bang, O. (2016). Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Optics Express, 24(2), 1206. doi:10.1364/oe.24.001206 | es_ES |
dc.description.references | Marques, C., Pospori, A., Demirci, G., Çetinkaya, O., Gawdzik, B., Antunes, P., … Webb, D. (2017). Fast Bragg Grating Inscription in PMMA Polymer Optical Fibres: Impact of Thermal Pre-Treatment of Preforms. Sensors, 17(4), 891. doi:10.3390/s17040891 | es_ES |
dc.description.references | Yuan, W., Stefani, A., & Bang, O. (2012). Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors. IEEE Photonics Technology Letters, 24(5), 401-403. doi:10.1109/lpt.2011.2179927 | es_ES |