- -

Experimental validation of a quasi-two-dimensional radial turbine model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental validation of a quasi-two-dimensional radial turbine model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galindo, José es_ES
dc.contributor.author Arnau Martínez, Francisco José es_ES
dc.contributor.author García-Cuevas González, Luis Miguel es_ES
dc.contributor.author Soler-Blanco, Pablo es_ES
dc.date.accessioned 2020-06-20T03:30:42Z
dc.date.available 2020-06-20T03:30:42Z
dc.date.issued 2018-07-20 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146718
dc.description.abstract [EN] This article presents the experimental validation of a quasi-two-dimensional radial turbine model able to be used in turbocharged reciprocating internal combustion engine simulations. A passenger car variable-geometry turbine has been tested under steady and pulsating flow conditions, instrumented with multiple pressure probes, temperature sensors and mass flow sensors. Using the data obtained, a pressure decomposition has been performed. The pressure at the turbine inlet and outlet has been split into forward and backward travelling waves, employing the reflected and transmitted waves to verify the goodness of the model. The experimental results have been used to compare the quasi-two-dimensional radial turbine model as well as a classic one-dimensional model. The quasi-two-dimensional code presents a good degree of correlation with the experimental results, providing better results than the one-dimensional approach, especially when studying the high-frequency spectrum. es_ES
dc.description.sponsorship Pablo Soler is partially supported through contract FPI-2017-S2-1428 of Programa de Apoyo para la Investigación y Desarrollo (PAID) of Universitat Politècnica de València. The authors of this paper wish to thank M.A. Ortiz and V. Ucedo for their invaluable work during the experimental setup and the campaign. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Turbocharger es_ES
dc.subject Mean-line model es_ES
dc.subject Radial turbine simulation es_ES
dc.subject Pulsating flow es_ES
dc.subject Turbine one-dimensional model es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Experimental validation of a quasi-two-dimensional radial turbine model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087418788502 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-2017-S2-1428/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Galindo, J.; Arnau Martínez, FJ.; García-Cuevas González, LM.; Soler-Blanco, P. (2018). Experimental validation of a quasi-two-dimensional radial turbine model. International Journal of Engine Research. https://doi.org/10.1177/1468087418788502 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087418788502 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\383376 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Kesgin, U. (2005). Effect of turbocharging system on the performance of a natural gas engine. Energy Conversion and Management, 46(1), 11-32. doi:10.1016/j.enconman.2004.02.006 es_ES
dc.description.references Tang, H., Pennycott, A., Akehurst, S., & Brace, C. J. (2014). A review of the application of variable geometry turbines to the downsized gasoline engine. International Journal of Engine Research, 16(6), 810-825. doi:10.1177/1468087414552289 es_ES
dc.description.references Pesiridis, A. (2012). The application of active control for turbocharger turbines. International Journal of Engine Research, 13(4), 385-398. doi:10.1177/1468087411435205 es_ES
dc.description.references Romagnoli, A., & Martinez-Botas, R. (2011). Performance prediction of a nozzled and nozzleless mixed-flow turbine in steady conditions. International Journal of Mechanical Sciences, 53(8), 557-574. doi:10.1016/j.ijmecsci.2011.05.003 es_ES
dc.description.references Payri, F., Serrano, J. R., Fajardo, P., Reyes-Belmonte, M. A., & Gozalbo-Belles, R. (2012). A physically based methodology to extrapolate performance maps of radial turbines. Energy Conversion and Management, 55, 149-163. doi:10.1016/j.enconman.2011.11.003 es_ES
dc.description.references Costall, A. W., McDavid, R. M., Martinez-Botas, R. F., & Baines, N. C. (2010). Pulse Performance Modeling of a Twin Entry Turbocharger Turbine Under Full and Unequal Admission. Journal of Turbomachinery, 133(2). doi:10.1115/1.4000566 es_ES
dc.description.references De Bellis, V., & Marelli, S. (2015). One-dimensional simulations and experimental analysis of a wastegated turbine for automotive engines under unsteady flow conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(13), 1801-1816. doi:10.1177/0954407015571672 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Páez, A., & Vidal, F. (2010). An experimental procedure to determine heat transfer properties of turbochargers. Measurement Science and Technology, 21(3), 035109. doi:10.1088/0957-0233/21/3/035109 es_ES
dc.description.references Burke, R. D., Copeland, C. D., Duda, T., & Rayes-Belmote, M. A. (2016). Lumped Capacitance and Three-Dimensional Computational Fluid Dynamics Conjugate Heat Transfer Modeling of an Automotive Turbocharger. Journal of Engineering for Gas Turbines and Power, 138(9). doi:10.1115/1.4032663 es_ES
dc.description.references Olmeda, P., Dolz, V., Arnau, F. J., & Reyes-Belmonte, M. A. (2013). Determination of heat flows inside turbochargers by means of a one dimensional lumped model. Mathematical and Computer Modelling, 57(7-8), 1847-1852. doi:10.1016/j.mcm.2011.11.078 es_ES
dc.description.references Serrano, J., Olmeda, P., Arnau, F., Reyes-Belmonte, M., & Lefebvre, A. (2013). Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications. SAE International Journal of Engines, 6(2), 716-728. doi:10.4271/2013-01-0576 es_ES
dc.description.references Aghaali, H., Ångström, H.-E., & Serrano, J. R. (2014). Evaluation of different heat transfer conditions on an automotive turbocharger. International Journal of Engine Research, 16(2), 137-151. doi:10.1177/1468087414524755 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Importance of Mechanical Losses Modeling in the Performance Prediction of Radial Turbochargers under Pulsating Flow Conditions. SAE International Journal of Engines, 6(2), 729-738. doi:10.4271/2013-01-0577 es_ES
dc.description.references Galindo, J., Fajardo, P., Navarro, R., & García-Cuevas, L. M. (2013). Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling. Applied Energy, 103, 116-127. doi:10.1016/j.apenergy.2012.09.013 es_ES
dc.description.references Hakeem, I., Su, C.-C., Costall, A., & Martinez-Botas, R. F. (2007). Effect of volute geometry on the steady and unsteady performance of mixed-flow turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(4), 535-549. doi:10.1243/09576509jpe314 es_ES
dc.description.references Hu X. An advanced turbocharger model for the internal combustion engine. PhD Thesis, Purdue University, West Lafayette, IN, 2000. es_ES
dc.description.references King A. A turbocharger unsteady performance model for the GT-power internal combustion engine simulation. PhD Thesis, Purdue University, West Lafayette, IN, 2000. es_ES
dc.description.references Rajoo, S., & Martinez-Botas, R. (2008). Variable Geometry Mixed Flow Turbine for Turbochargers: An Experimental Study. International Journal of Fluid Machinery and Systems, 1(1), 155-168. doi:10.5293/ijfms.2008.1.1.155 es_ES
dc.description.references Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Navarro, R., & García-Tíscar, J. (2014). Acoustic characterization of automotive turbocompressors. International Journal of Engine Research, 16(1), 31-37. doi:10.1177/1468087414562866 es_ES
dc.description.references Leufvén, O., & Eriksson, L. (2014). Measurement, analysis and modeling of centrifugal compressor flow for low pressure ratios. International Journal of Engine Research, 17(2), 153-168. doi:10.1177/1468087414562456 es_ES
dc.description.references Galindo, J., Tiseira, A., Navarro, R., Tarí, D., & Meano, C. M. (2017). Effect of the inlet geometry on performance, surge margin and noise emission of an automotive turbocharger compressor. Applied Thermal Engineering, 110, 875-882. doi:10.1016/j.applthermaleng.2016.08.099 es_ES
dc.description.references Galindo, J., Tiseira, A., Fajardo, P., & García-Cuevas, L. M. (2014). Development and validation of a radial variable geometry turbine model for transient pulsating flow applications. Energy Conversion and Management, 85, 190-203. doi:10.1016/j.enconman.2014.05.072 es_ES
dc.description.references Ding, Z., Zhuge, W., Zhang, Y., Chen, H., Martinez-Botas, R., & Yang, M. (2017). A one-dimensional unsteady performance model for turbocharger turbines. Energy, 132, 341-355. doi:10.1016/j.energy.2017.04.154 es_ES
dc.description.references Toro, E. F., Spruce, M., & Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4(1), 25-34. doi:10.1007/bf01414629 es_ES
dc.description.references Van Leer, B. (1974). Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 14(4), 361-370. doi:10.1016/0021-9991(74)90019-9 es_ES
dc.description.references Courant, R., Friedrichs, K., & Lewy, H. (1928). �ber die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100(1), 32-74. doi:10.1007/bf01448839 es_ES
dc.description.references Chiong, M. S., Rajoo, S., Romagnoli, A., Costall, A. W., & Martinez-Botas, R. F. (2015). Non-adiabatic pressure loss boundary condition for modelling turbocharger turbine pulsating flow. Energy Conversion and Management, 93, 267-281. doi:10.1016/j.enconman.2014.12.058 es_ES
dc.description.references Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., Dombrovsky, A., & Tartoussi, H. (2016). Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management, 128, 281-293. doi:10.1016/j.enconman.2016.09.032 es_ES
dc.description.references Serrano, J. R., Arnau, F. J., Dolz, V., Tiseira, A., & Cervelló, C. (2008). A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling. Energy Conversion and Management, 49(12), 3729-3745. doi:10.1016/j.enconman.2008.06.031 es_ES
dc.description.references Piñero, G., Vergara, L., Desantes, J. M., & Broatch, A. (2000). Estimation of velocity fluctuation in internal combustion engine exhaust systems through beamforming techniques. Measurement Science and Technology, 11(11), 1585-1595. doi:10.1088/0957-0233/11/11/307 es_ES
dc.description.references Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51-83. doi:10.1109/proc.1978.10837 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem