Mostrar el registro sencillo del ítem
dc.contributor.author | Galindo, José | es_ES |
dc.contributor.author | Arnau Martínez, Francisco José | es_ES |
dc.contributor.author | García-Cuevas González, Luis Miguel | es_ES |
dc.contributor.author | Soler-Blanco, Pablo | es_ES |
dc.date.accessioned | 2020-06-20T03:30:42Z | |
dc.date.available | 2020-06-20T03:30:42Z | |
dc.date.issued | 2018-07-20 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146718 | |
dc.description.abstract | [EN] This article presents the experimental validation of a quasi-two-dimensional radial turbine model able to be used in turbocharged reciprocating internal combustion engine simulations. A passenger car variable-geometry turbine has been tested under steady and pulsating flow conditions, instrumented with multiple pressure probes, temperature sensors and mass flow sensors. Using the data obtained, a pressure decomposition has been performed. The pressure at the turbine inlet and outlet has been split into forward and backward travelling waves, employing the reflected and transmitted waves to verify the goodness of the model. The experimental results have been used to compare the quasi-two-dimensional radial turbine model as well as a classic one-dimensional model. The quasi-two-dimensional code presents a good degree of correlation with the experimental results, providing better results than the one-dimensional approach, especially when studying the high-frequency spectrum. | es_ES |
dc.description.sponsorship | Pablo Soler is partially supported through contract FPI-2017-S2-1428 of Programa de Apoyo para la Investigación y Desarrollo (PAID) of Universitat Politècnica de València. The authors of this paper wish to thank M.A. Ortiz and V. Ucedo for their invaluable work during the experimental setup and the campaign. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Turbocharger | es_ES |
dc.subject | Mean-line model | es_ES |
dc.subject | Radial turbine simulation | es_ES |
dc.subject | Pulsating flow | es_ES |
dc.subject | Turbine one-dimensional model | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Experimental validation of a quasi-two-dimensional radial turbine model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087418788502 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI-2017-S2-1428/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Galindo, J.; Arnau Martínez, FJ.; García-Cuevas González, LM.; Soler-Blanco, P. (2018). Experimental validation of a quasi-two-dimensional radial turbine model. International Journal of Engine Research. https://doi.org/10.1177/1468087418788502 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087418788502 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\383376 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Kesgin, U. (2005). Effect of turbocharging system on the performance of a natural gas engine. Energy Conversion and Management, 46(1), 11-32. doi:10.1016/j.enconman.2004.02.006 | es_ES |
dc.description.references | Tang, H., Pennycott, A., Akehurst, S., & Brace, C. J. (2014). A review of the application of variable geometry turbines to the downsized gasoline engine. International Journal of Engine Research, 16(6), 810-825. doi:10.1177/1468087414552289 | es_ES |
dc.description.references | Pesiridis, A. (2012). The application of active control for turbocharger turbines. International Journal of Engine Research, 13(4), 385-398. doi:10.1177/1468087411435205 | es_ES |
dc.description.references | Romagnoli, A., & Martinez-Botas, R. (2011). Performance prediction of a nozzled and nozzleless mixed-flow turbine in steady conditions. International Journal of Mechanical Sciences, 53(8), 557-574. doi:10.1016/j.ijmecsci.2011.05.003 | es_ES |
dc.description.references | Payri, F., Serrano, J. R., Fajardo, P., Reyes-Belmonte, M. A., & Gozalbo-Belles, R. (2012). A physically based methodology to extrapolate performance maps of radial turbines. Energy Conversion and Management, 55, 149-163. doi:10.1016/j.enconman.2011.11.003 | es_ES |
dc.description.references | Costall, A. W., McDavid, R. M., Martinez-Botas, R. F., & Baines, N. C. (2010). Pulse Performance Modeling of a Twin Entry Turbocharger Turbine Under Full and Unequal Admission. Journal of Turbomachinery, 133(2). doi:10.1115/1.4000566 | es_ES |
dc.description.references | De Bellis, V., & Marelli, S. (2015). One-dimensional simulations and experimental analysis of a wastegated turbine for automotive engines under unsteady flow conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(13), 1801-1816. doi:10.1177/0954407015571672 | es_ES |
dc.description.references | Serrano, J. R., Olmeda, P., Páez, A., & Vidal, F. (2010). An experimental procedure to determine heat transfer properties of turbochargers. Measurement Science and Technology, 21(3), 035109. doi:10.1088/0957-0233/21/3/035109 | es_ES |
dc.description.references | Burke, R. D., Copeland, C. D., Duda, T., & Rayes-Belmote, M. A. (2016). Lumped Capacitance and Three-Dimensional Computational Fluid Dynamics Conjugate Heat Transfer Modeling of an Automotive Turbocharger. Journal of Engineering for Gas Turbines and Power, 138(9). doi:10.1115/1.4032663 | es_ES |
dc.description.references | Olmeda, P., Dolz, V., Arnau, F. J., & Reyes-Belmonte, M. A. (2013). Determination of heat flows inside turbochargers by means of a one dimensional lumped model. Mathematical and Computer Modelling, 57(7-8), 1847-1852. doi:10.1016/j.mcm.2011.11.078 | es_ES |
dc.description.references | Serrano, J., Olmeda, P., Arnau, F., Reyes-Belmonte, M., & Lefebvre, A. (2013). Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications. SAE International Journal of Engines, 6(2), 716-728. doi:10.4271/2013-01-0576 | es_ES |
dc.description.references | Aghaali, H., Ångström, H.-E., & Serrano, J. R. (2014). Evaluation of different heat transfer conditions on an automotive turbocharger. International Journal of Engine Research, 16(2), 137-151. doi:10.1177/1468087414524755 | es_ES |
dc.description.references | Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042 | es_ES |
dc.description.references | Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Importance of Mechanical Losses Modeling in the Performance Prediction of Radial Turbochargers under Pulsating Flow Conditions. SAE International Journal of Engines, 6(2), 729-738. doi:10.4271/2013-01-0577 | es_ES |
dc.description.references | Galindo, J., Fajardo, P., Navarro, R., & García-Cuevas, L. M. (2013). Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling. Applied Energy, 103, 116-127. doi:10.1016/j.apenergy.2012.09.013 | es_ES |
dc.description.references | Hakeem, I., Su, C.-C., Costall, A., & Martinez-Botas, R. F. (2007). Effect of volute geometry on the steady and unsteady performance of mixed-flow turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(4), 535-549. doi:10.1243/09576509jpe314 | es_ES |
dc.description.references | Hu X. An advanced turbocharger model for the internal combustion engine. PhD Thesis, Purdue University, West Lafayette, IN, 2000. | es_ES |
dc.description.references | King A. A turbocharger unsteady performance model for the GT-power internal combustion engine simulation. PhD Thesis, Purdue University, West Lafayette, IN, 2000. | es_ES |
dc.description.references | Rajoo, S., & Martinez-Botas, R. (2008). Variable Geometry Mixed Flow Turbine for Turbochargers: An Experimental Study. International Journal of Fluid Machinery and Systems, 1(1), 155-168. doi:10.5293/ijfms.2008.1.1.155 | es_ES |
dc.description.references | Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Navarro, R., & García-Tíscar, J. (2014). Acoustic characterization of automotive turbocompressors. International Journal of Engine Research, 16(1), 31-37. doi:10.1177/1468087414562866 | es_ES |
dc.description.references | Leufvén, O., & Eriksson, L. (2014). Measurement, analysis and modeling of centrifugal compressor flow for low pressure ratios. International Journal of Engine Research, 17(2), 153-168. doi:10.1177/1468087414562456 | es_ES |
dc.description.references | Galindo, J., Tiseira, A., Navarro, R., Tarí, D., & Meano, C. M. (2017). Effect of the inlet geometry on performance, surge margin and noise emission of an automotive turbocharger compressor. Applied Thermal Engineering, 110, 875-882. doi:10.1016/j.applthermaleng.2016.08.099 | es_ES |
dc.description.references | Galindo, J., Tiseira, A., Fajardo, P., & García-Cuevas, L. M. (2014). Development and validation of a radial variable geometry turbine model for transient pulsating flow applications. Energy Conversion and Management, 85, 190-203. doi:10.1016/j.enconman.2014.05.072 | es_ES |
dc.description.references | Ding, Z., Zhuge, W., Zhang, Y., Chen, H., Martinez-Botas, R., & Yang, M. (2017). A one-dimensional unsteady performance model for turbocharger turbines. Energy, 132, 341-355. doi:10.1016/j.energy.2017.04.154 | es_ES |
dc.description.references | Toro, E. F., Spruce, M., & Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4(1), 25-34. doi:10.1007/bf01414629 | es_ES |
dc.description.references | Van Leer, B. (1974). Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 14(4), 361-370. doi:10.1016/0021-9991(74)90019-9 | es_ES |
dc.description.references | Courant, R., Friedrichs, K., & Lewy, H. (1928). �ber die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100(1), 32-74. doi:10.1007/bf01448839 | es_ES |
dc.description.references | Chiong, M. S., Rajoo, S., Romagnoli, A., Costall, A. W., & Martinez-Botas, R. F. (2015). Non-adiabatic pressure loss boundary condition for modelling turbocharger turbine pulsating flow. Energy Conversion and Management, 93, 267-281. doi:10.1016/j.enconman.2014.12.058 | es_ES |
dc.description.references | Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., Dombrovsky, A., & Tartoussi, H. (2016). Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management, 128, 281-293. doi:10.1016/j.enconman.2016.09.032 | es_ES |
dc.description.references | Serrano, J. R., Arnau, F. J., Dolz, V., Tiseira, A., & Cervelló, C. (2008). A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling. Energy Conversion and Management, 49(12), 3729-3745. doi:10.1016/j.enconman.2008.06.031 | es_ES |
dc.description.references | Piñero, G., Vergara, L., Desantes, J. M., & Broatch, A. (2000). Estimation of velocity fluctuation in internal combustion engine exhaust systems through beamforming techniques. Measurement Science and Technology, 11(11), 1585-1595. doi:10.1088/0957-0233/11/11/307 | es_ES |
dc.description.references | Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51-83. doi:10.1109/proc.1978.10837 | es_ES |