- -

Valorization of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in portland cement mixtures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Valorization of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in portland cement mixtures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pereira, A.M. es_ES
dc.contributor.author Moraes, J.C.B es_ES
dc.contributor.author Bassan de Moraes, M.J.B. es_ES
dc.contributor.author Akasaki, J.L. es_ES
dc.contributor.author Tashima, M.M. es_ES
dc.contributor.author Soriano Martinez, Lourdes es_ES
dc.contributor.author Monzó Balbuena, José Mª es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.date.accessioned 2020-07-02T06:51:16Z
dc.date.available 2020-07-02T06:51:16Z
dc.date.issued 2018-04 es_ES
dc.identifier.issn 0465-2746 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147326
dc.description.abstract [EN] Portland cement (OPC) production is one of the most contaminating greenhouse gas producing activities. In order to reduce OPC consumption, several alternatives are being assessed, and the use of pozzolanic material is one of them. This paper presents study on the reactivity of sugarcane bagasse ash (SCBA), a residue from sugarcane industry, as a pozzolanic material. In order to evaluate SCBA reactivity, it was mixed in pastes with hydrated lime and OPC, which were microstructurally characterised. These studies showed that SCBA presents some pozzolanic characteristics. Studies on mortars in which OPC was replaced by SCBA in the range 10¿30% were also carried out. Replacement in the range 15¿20% yielded the best behaviour in terms of compressive strength. Finally, it can be concluded this ash could be valorised despite its relative low pozzolanic reactivity. es_ES
dc.description.abstract [ES] Valorización de la ceniza de bagazo de azúcar (SCBA) con alto contenido de cuarzo como material puzolánico en mezclas de cemento Portland. La producción de cemento Portland (OPC) presenta una elevada emisión de CO2. Con el objeto de reducir el consumo de OPC, se están evaluando algunas alternativas, y el uso de materiales puzolánicos es una de ellas. En este trabajo se presenta el estudio de la reactividad de la ceniza de bagazo de caña de azúcar (SCBA) como material puzolánico, un residuo procedente de la industria de la caña de azúcar. Al objeto de evaluar la reactividad de SCBA, se realizaron pastas con cal hidratada y con OPC, las cuales fueron caracterizadas microestructuralmente. Estos estudios mostraron que SCBA presenta una cierta característica puzolánica. Se llevaron a cabo estudios en morteros en los que OPC se sustituyó por SCBA en el intervalo de 10-30%. La sustitución en el intervalo 15-20% produjo el mejor comportamiento en términos de resistencia a compresión. Finalmente, se puede concluir que esta ceniza puede ser valorizada a pesar de su baja reactividad puzolánica. es_ES
dc.description.sponsorship The authors would like to thank the Ministerio de Educacion, Cultura y Deporte of Spain (Cooperacion Interuniversitaria Program with Brazil, Project PHB-2011-0016-PC), CAPES-Brazil (Project CAPES/DGU No. 266/12), CNPq (Project 401724/2013-1) and Electron Microscopy Service of the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Departmento de Publicaciones del CSIC es_ES
dc.relation.ispartof Materiales de Construcción es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Active addition es_ES
dc.subject Compressive strength es_ES
dc.subject Mortar es_ES
dc.subject Pozzolane es_ES
dc.subject Thermal analysis es_ES
dc.subject Electron Microscopy Service of the UPV es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Valorization of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in portland cement mixtures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3989/mc.2018.00617 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//401724%2F2013-1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//266%2F12/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ME//PHB2011-0016-PC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Pereira, A.; Moraes, J.; Bassan De Moraes, M.; Akasaki, J.; Tashima, M.; Soriano Martinez, L.; Monzó Balbuena, JM.... (2018). Valorization of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in portland cement mixtures. Materiales de Construcción. 68(330):153-163. https://doi.org/10.3989/mc.2018.00617 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3989/mc.2018.00617 es_ES
dc.description.upvformatpinicio 153 es_ES
dc.description.upvformatpfin 163 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 68 es_ES
dc.description.issue 330 es_ES
dc.relation.pasarela S\381261 es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references 1. World cement production. CEMBUREAU – The European Cement Association Website; https://cembureau.eu/media/1503/2015activityreport_cembureau.pdf es_ES
dc.description.references 2. Guo, X.; Shi, H.; Dick, W.A. (2010) Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem. Concr. Compos. 32, 142–7. es_ES
dc.description.references 3. Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials. 3rd ed. New York: McGraw- Hill, (2006). es_ES
dc.description.references 4. Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z. (2016) Structural performance of reinforced geopolymer concrete members: A review, Constr. Build. Mater. 120, 251-264. es_ES
dc.description.references 5. Sharp, J.H.; Gartner, E.M.; Macphee, D.E. (2010) Novel cement system (sustainability). Session 2 of the Fred Glasser cement science symposium. Adv. Cem. Res. 22(4), 195–202. es_ES
dc.description.references 6. BS EN 197-1. Cement – Part 1: Composition, specifications and conformity criteria for common cements. London: European Committee For Standardisation; (2011). es_ES
dc.description.references 7. Siddique, R.; Khan, M.I. Supplementary Cementing Materials. 1st ed. Berlin: Springer, (2011). es_ES
dc.description.references 8. Siddique, R. Waste Material and By-Products in Concrete. 1st ed. Berlin: Springer, (2008). es_ES
dc.description.references 9. Küçükyıldırım, E.; Uzal, B. (2014) Characteristics of calcined natural zeolites for use in high-performance pozzolan blended cements. Constr. Build. Mater. 73, 229–34. es_ES
dc.description.references 10. Tashima, M.M.; Soriano, L.; Monzó, J.; Borrachero, M.V.; Akasaki, J.L.; Payá, J. (2014) New method to assessthe pozzolanic reactivity of mineral admixtures by means pH and electrical conductivity measurementsin lime:pozzolan suspensions. Mater. Construc. 64 [316], e032. es_ES
dc.description.references 11. Wongkeo, W.; Thongsanitgarn, P.; Chaipanich, A. (2012) Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars. Mater. Des. 36, 655-62. es_ES
dc.description.references 12. Lee, C.L.; Huang, R.; Lin, W.T.; Weng, T.L. (2012) Establishment of the durability indices for cement-based composite containing supplementary cementitious materials. Mater. Des. 37, 28-39. es_ES
dc.description.references 13. Sinsiri, T.; Kroenhong, W.; Jaturapitakkul, C.; Chindaprasirt, P. (2012) Assessing the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste. Mater. Des. 42, 424-33. es_ES
dc.description.references 14. Pereira, C.L.; Savastano Jr., H.; Payá, J.; Santos, S.F.; Borrachero, M.V.; Monzó, J. (2013) Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Ind. Crop. Prod. 49, 88–96. es_ES
dc.description.references 15. Paiva, H.; Velosa, A.; Cachim, P.; Ferreira, V.M. (2016) Effect of pozzolans with diferent physical and chemical characteristics on concrete properties. Mater. Construc. 66 [322], 1-12. 5 es_ES
dc.description.references 16. Hoi, L.W.S.; Martincigh, B.S. (2013) Sugar cane plant fibres: Separation and characterization. Ind. Crop. Prod. 47, 1–12. es_ES
dc.description.references 17. Hugot, E. Handbook of Cane Sugar Engineering. 3rd ed. Amsterdam:Elsevier Science Publishers, (1986). es_ES
dc.description.references 18. Sugarcane production. FAOSTAT – Food and Agriculture Organisation of the United Nations, Statistics Division; http://www.fao.org/faostat/en/#data/QC es_ES
dc.description.references 19. Sugarcane production. UNICA – União da Indústria de Cana-de-Açúcar Website; http://www.unicadata.com. br/index.php?idioma=2 es_ES
dc.description.references 20. A Geração Termoelétrica com a Queima do Bagaço de Cana-de-Açúcar no Brasil. CONAB – Companhia Nacional de Abastecimento; http://www.agricultura.gov.br/assuntos/sustentabilidade/agroenergia/arquivos-termoeletrica-com-a-queima-do-bagaco-de-cana-de-acucar/termoeletrica-com-a-queima-do-bagaco-de-cana-de-acucar-no-brasil-safra-2009-2010.pdf es_ES
dc.description.references 21. Cortez, L.A.B.; Gómez, E.O. (1998) A method for exergy analysis of sugarcane bagasse boilers. Braz. J. Chem. Eng. 15 [1]. es_ES
dc.description.references 22. Souza, A.E.; Teixeira, S.R.; Santos, G.T.A.; Costa, F.B.; Longo, E. (2011) Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials. J. Environ. Manage. 92, 2774–80. es_ES
dc.description.references 23. Hofsetz, K.; Silva, M.A. (2012) Brazilian sugarcane bagasse: Energy and non-energy consumption. Biomass Bioenerg 46, 564–573. es_ES
dc.description.references 24. Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. (2009) Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39, 110–115. es_ES
dc.description.references 25. Frías, M.; Villar, E.; Savastano, H. (2011) Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Compos. 33, 490–496. es_ES
dc.description.references 26. Fairbairn, E.M.R.; Americano, B.B.; Cordeiro, G.C.; Paula, T.P.; Toledo Filho, R.D.; Silvoso, M.M. (2010) Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J. Environ. Manage. 91, 1864–1871. es_ES
dc.description.references 27. Cordeiro, G.C.; Toledo Filho, R.D.; Fairbairn, E.M.R. (2009) Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Constr. Build. Mater. 23, 3301–3303. es_ES
dc.description.references 27. UNE-EN 196-5. Método de ensayo de cementos. Parte 5: Ensayo de puzolanicidad para los cementos puzolánicos. Madrid: Asociación Espa-ola de Normalización y Certificación – AENOR; (2011). es_ES
dc.description.references 29. NBR 7215. Cimento Portland – Determinação da resistência à compressão. Rio de Janeiro: Associação Brasileira de Normas Técnicas – ANBT; (1996). es_ES
dc.description.references 29. ASTM C-618. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. Philadelphia: ASTM International; (2005). es_ES
dc.description.references 31. Allahverdi, A.; Shaverdi, B.; Kani, E. (2010) Influence of sodium oxide on properties of fresh and hardened paste of alkali-activated blast-furnace slag. Int. J. Civ. Eng. 8, 304–314. es_ES
dc.description.references 32. Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. (1999) Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 82(3), 742–748. es_ES
dc.description.references 33. Moraes, J.C.B.; Akasaki, J.L.; Melges, J.L.P.; Monzó, J.; Borrachero, M.V.; Soriano, L.; Payá, J.; Tashima, M.M. (2015) Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterisation of pastes and mechanical strength of mortars. Constr. Build. Mater. 94, 670–677. es_ES
dc.description.references 34. Murat, M. (1983) Hydration reaction and hardening of calcined clays and related minerals: II. Influence of mineralogical properties of raw-kaolinite on the reactivity of metakaolinite. Cem. Concr. Res. 11, 511–518. es_ES
dc.description.references 35. Serry, M.A.; Taha, A.S.; El-Hemaly, S.A.S.; El-Didamony, H. (1984) Metakaolin-lime hydration products. Thermochim. Acta 79, 103–110. es_ES
dc.description.references 36. Lorca, P.; Calabuig, R.; Benlloch, J.; Soriano, L.; Payá, J. (2014) Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition. Mater. Des. 64, 535–541. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem