Ansoff, H. I. (1975). Managing Strategic Surprise by Response to Weak Signals. California Management Review, 18(2), 21-33. doi:10.2307/41164635
S. Bird, E. Loper and E. Klein, Natural Language Processing with Python, O’Reilly Media Inc., 2009.
A. Cooper, C. Voigt, E. Unterfrauner, M. Kravcik, J. Pawlowski and H. Pirkkalainen, Report on weak signals collection, in: TELMAP, European Commission Seventh Framework Project (IST-257822), Deliverable D4.1, 2011, pp. 6–7.
[+]
Ansoff, H. I. (1975). Managing Strategic Surprise by Response to Weak Signals. California Management Review, 18(2), 21-33. doi:10.2307/41164635
S. Bird, E. Loper and E. Klein, Natural Language Processing with Python, O’Reilly Media Inc., 2009.
A. Cooper, C. Voigt, E. Unterfrauner, M. Kravcik, J. Pawlowski and H. Pirkkalainen, Report on weak signals collection, in: TELMAP, European Commission Seventh Framework Project (IST-257822), Deliverable D4.1, 2011, pp. 6–7.
J. Dator, Futures studies as applied knowledge, in: New Thinking for a New Millennium, R. Slaughter, ed., Routledge, London, 1996, www.futures.hawaii.edu/dator/futures/appliedknow.html.
Dator, J. (2005). Universities without «quality» and quality without «universities». On the Horizon, 13(4), 199-215. doi:10.1108/10748120510627321
Duan, J., Zhang, M., Jingzhong, W., & Xu, Y. (2011). A hybrid framework to extract bilingual multiword expression from free text. Expert Systems with Applications, 38(1), 314-320. doi:10.1016/j.eswa.2010.06.067
Fink, L., Yogev, N., & Even, A. (2017). Business intelligence and organizational learning: An empirical investigation of value creation processes. Information & Management, 54(1), 38-56. doi:10.1016/j.im.2016.03.009
Guralnik, V., & Srivastava, J. (1999). Event detection from time series data. Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’99. doi:10.1145/312129.312190
Haegeman, K., Marinelli, E., Scapolo, F., Ricci, A., & Sokolov, A. (2013). Quantitative and qualitative approaches in Future-oriented Technology Analysis (FTA): From combination to integration? Technological Forecasting and Social Change, 80(3), 386-397. doi:10.1016/j.techfore.2012.10.002
Hiltunen, E. (2008). The future sign and its three dimensions. Futures, 40(3), 247-260. doi:10.1016/j.futures.2007.08.021
Ilmola, L., & Kuusi, O. (2006). Filters of weak signals hinder foresight: Monitoring weak signals efficiently in corporate decision-making. Futures, 38(8), 908-924. doi:10.1016/j.futures.2005.12.019
Ishikiriyama, C. S., Miro, D., & Gomes, C. F. S. (2015). Text Mining Business Intelligence: A small sample of what words can say. Procedia Computer Science, 55, 261-267. doi:10.1016/j.procs.2015.07.044
K. Jung, A Study of Foresight Method Based on Text Mining and Complexity Network Analysis, KISTEP, Seoul, 2010.
Kawahara, Y., & Sugiyama, M. (2009). Change-Point Detection in Time-Series Data by Direct Density-Ratio Estimation. Proceedings of the 2009 SIAM International Conference on Data Mining. doi:10.1137/1.9781611972795.34
Kim, J., Han, M., Lee, Y., & Park, Y. (2016). Futuristic data-driven scenario building: Incorporating text mining and fuzzy association rule mining into fuzzy cognitive map. Expert Systems with Applications, 57, 311-323. doi:10.1016/j.eswa.2016.03.043
Koivisto, R., Kulmala, I., & Gotcheva, N. (2016). Weak signals and damage scenarios — Systematics to identify weak signals and their sources related to mass transport attacks. Technological Forecasting and Social Change, 104, 180-190. doi:10.1016/j.techfore.2015.12.010
Liu, S., Yamada, M., Collier, N., & Sugiyama, M. (2013). Change-point detection in time-series data by relative density-ratio estimation. Neural Networks, 43, 72-83. doi:10.1016/j.neunet.2013.01.012
MohamadiBaghmolaei, R., Mozafari, N., & Hamzeh, A. (2017). Continuous states latency aware influence maximization in social networks. AI Communications, 30(2), 99-116. doi:10.3233/aic-170720
Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513-523. doi:10.1016/0306-4573(88)90021-0
Schoemaker, P. J. H., Day, G. S., & Snyder, S. A. (2013). Integrating organizational networks, weak signals, strategic radars and scenario planning. Technological Forecasting and Social Change, 80(4), 815-824. doi:10.1016/j.techfore.2012.10.020
Thorleuchter, D., Scheja, T., & Van den Poel, D. (2014). Semantic weak signal tracing. Expert Systems with Applications, 41(11), 5009-5016. doi:10.1016/j.eswa.2014.02.046
Thorleuchter, D., & Van den Poel, D. (2015). Idea mining for web-based weak signal detection. Futures, 66, 25-34. doi:10.1016/j.futures.2014.12.007
Tseng, Y.-H., Lin, C.-J., & Lin, Y.-I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247. doi:10.1016/j.ipm.2006.11.011
Willett, P. (2006). The Porter stemming algorithm: then and now. Program, 40(3), 219-223. doi:10.1108/00330330610681295
Yangui, R., Nabli, A., & Gargouri, F. (2016). Automatic Transformation of Data Warehouse Schema to NoSQL Data Base: Comparative Study. Procedia Computer Science, 96, 255-264. doi:10.1016/j.procs.2016.08.138
Yoon, J. (2012). Detecting weak signals for long-term business opportunities using text mining of Web news. Expert Systems with Applications, 39(16), 12543-12550. doi:10.1016/j.eswa.2012.04.059
Zhang, W., Yoshida, T., & Tang, X. (2008). Text classification based on multi-word with support vector machine. Knowledge-Based Systems, 21(8), 879-886. doi:10.1016/j.knosys.2008.03.044
[-]