Mostrar el registro sencillo del ítem
dc.contributor.author | Ageeva, A.A. | es_ES |
dc.contributor.author | Khramtsova, E.A. | es_ES |
dc.contributor.author | Magin, I.M. | es_ES |
dc.contributor.author | Purtov, P.A. | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.contributor.author | Leshina, T.V. | es_ES |
dc.date.accessioned | 2020-07-11T03:31:05Z | |
dc.date.available | 2020-07-11T03:31:05Z | |
dc.date.issued | 2018-12-12 | es_ES |
dc.identifier.issn | 0947-6539 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/147777 | |
dc.description | "This is the peer reviewed version of the following article: Ageeva, Aleksandra A., Ekaterina A. Khramtsova, Ilya M. Magin, Peter A. Purtov, Miguel A. Miranda, and Tatyana V. Leshina. 2018. Role of Association in Chiral Catalysis: From Asymmetric Synthesis to Spin Selectivity. Chemistry A European Journal 24 (70). Wiley: 18587 600. doi:10.1002/chem.201801625, which has been published in final form at https://doi.org/10.1002/chem.201801625. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." | es_ES |
dc.description.abstract | [EN] The origin of biomolecules in the pre-biological period is still a matter of debate, as is the unclarified nature of the differences in enantiomer properties, especially for the medically important activity of chiral drugs. With regards to the first issue, significant progress was made in the last decade of the 20th century through experimental confirmation of Frank's popular theory on chiral catalysis in spontaneous asymmetric synthesis. Soai examined the chiral catalysis of the alkylation of achiral aldehydes by achiral reagents. Attempts to model this process demonstrated the key role of chiral compounds associates as templates for chiral synthesis. However, the elementary mechanism of alkylation and the role of free radicals in this process are still incompletely understood. Meanwhile, the influence of external magnetic fields on chiral enrichment in the radical path of alkylation has been predicted. In addition, the role of chiral dyad association in another radical process, electron transfer (ET), has been recently demonstrated by the following methods: chemically induced dynamic nuclear polarisation (CIDNP), NMR spectroscopy, XRD and photochemistry. The CIDNP analysis of ET in two dyads has revealed a phenomenon first observed for chiral systems, spin selectivity, which results in the difference between the CIDNP enhancement coefficients of dyad diastereomers. These dyads are linked systems consisting of the widespread drug (S)-naproxen (NPX) or its R analogue and electron donors, namely, (S)-tryptophan and (S)-N-methylpyrrolidine. Because NPX is one of the most striking examples of the difference in the therapeutic properties of enantiomers, the appearance of spin selectivity in dyads with (S)- and (R)-NPX and S donors can shed light on the chemical nature of these differences. This review is devoted to discussing the chemical nature of spin selectivity and the role of chiral associates in the chiral catalysis of an elementary radical reaction: ET in chiral dyads. | es_ES |
dc.description.sponsorship | The work was supported by the Russian Science Foundation (18-13-00047). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Asymmetric catalysis | es_ES |
dc.subject | Chirality | es_ES |
dc.subject | Electron transfer | es_ES |
dc.subject | Enantioselectivity | es_ES |
dc.subject | Spin selectivity | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Role of association in chiral catalysis: from asymmetric synthesis to spin selectivity | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/chem.201801625 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/RFBR//8-13-00047/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Ageeva, A.; Khramtsova, E.; Magin, I.; Purtov, P.; Miranda Alonso, MÁ.; Leshina, T. (2018). Role of association in chiral catalysis: from asymmetric synthesis to spin selectivity. Chemistry - A European Journal. 24(70):18587-18600. https://doi.org/10.1002/chem.201801625 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/chem.201801625 | es_ES |
dc.description.upvformatpinicio | 18587 | es_ES |
dc.description.upvformatpfin | 18600 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 70 | es_ES |
dc.identifier.pmid | 29932476 | es_ES |
dc.relation.pasarela | S\388446 | es_ES |
dc.contributor.funder | Russian Science Foundation | es_ES |
dc.description.references | Avalos, M., Babiano, R., Cintas, P., Jiménez, J. L., Palacios, J. C., & Barron, L. D. (1998). Absolute Asymmetric Synthesis under Physical Fields: Facts and Fictions. Chemical Reviews, 98(7), 2391-2404. doi:10.1021/cr970096o | es_ES |
dc.description.references | Lin, G.-Q., Zhang, J.-G., & Cheng, J.-F. (2011). Overview of Chirality and Chiral Drugs. Chiral Drugs, 3-28. doi:10.1002/9781118075647.ch1 | es_ES |
dc.description.references | Liu, Y., & Gu, X.-H. (2011). Pharmacology of Chiral Drugs. Chiral Drugs, 323-345. doi:10.1002/9781118075647.ch8 | es_ES |
dc.description.references | Frank, F. C. (1953). On spontaneous asymmetric synthesis. Biochimica et Biophysica Acta, 11, 459-463. doi:10.1016/0006-3002(53)90082-1 | es_ES |
dc.description.references | Soai, K., Kawasaki, T., & Matsumoto, A. (2014). Asymmetric Autocatalysis of Pyrimidyl Alkanol and Its Application to the Study on the Origin of Homochirality. Accounts of Chemical Research, 47(12), 3643-3654. doi:10.1021/ar5003208 | es_ES |
dc.description.references | Soai, K., Kawasaki, T., & Matsumoto, A. (2014). The Origins of Homochirality Examined by Using Asymmetric Autocatalysis. The Chemical Record, 14(1), 70-83. doi:10.1002/tcr.201300028 | es_ES |
dc.description.references | Soai, K., Matsumoto, A., & Kawasaki, T. (2017). Asymmetric Autocatalysis and the Origins of Homochirality of Organic Compounds. An Overview. Advances in Asymmetric Autocatalysis and Related Topics, 1-30. doi:10.1016/b978-0-12-812824-4.00001-0 | es_ES |
dc.description.references | Matsumoto, A., Kawasaki, T., & Soai, K. (2017). Structural Study of Asymmetric Autocatalysis by X-Ray Crystallography. Advances in Asymmetric Autocatalysis and Related Topics, 183-202. doi:10.1016/b978-0-12-812824-4.00010-1 | es_ES |
dc.description.references | Schiaffino, L., & Ercolani, G. (2010). Mechanism of the Asymmetric Autocatalytic Soai Reaction Studied by Density Functional Theory. Chemistry - A European Journal, 16(10), 3147-3156. doi:10.1002/chem.200902543 | es_ES |
dc.description.references | Buono, F. G., & Blackmond, D. G. (2003). Kinetic Evidence for a Tetrameric Transition State in the Asymmetric Autocatalytic Alkylation of Pyrimidyl Aldehydes†. Journal of the American Chemical Society, 125(30), 8978-8979. doi:10.1021/ja034705n | es_ES |
dc.description.references | Gridnev, I. D., & Vorobiev, A. K. (2012). Quantification of Sophisticated Equilibria in the Reaction Pool and Amplifying Catalytic Cycle of the Soai Reaction. ACS Catalysis, 2(10), 2137-2149. doi:10.1021/cs300497h | es_ES |
dc.description.references | Gridnev, I. D., Serafimov, J. M., & Brown, J. M. (2004). Solution Structure and Reagent Binding of the Zinc Alkoxide Catalyst in the Soai Asymmetric Autocatalytic Reaction. Angewandte Chemie International Edition, 43(37), 4884-4887. doi:10.1002/anie.200353572 | es_ES |
dc.description.references | Gridnev, I. D., Serafimov, J. M., & Brown, J. M. (2004). Solution Structure and Reagent Binding of the Zinc Alkoxide Catalyst in the Soai Asymmetric Autocatalytic Reaction. Angewandte Chemie, 116(37), 4992-4995. doi:10.1002/ange.200353572 | es_ES |
dc.description.references | Noble-Terán, M. E., Cruz, J.-M., Micheau, J.-C., & Buhse, T. (2018). A Quantification of the Soai Reaction. ChemCatChem, 10(3), 642-648. doi:10.1002/cctc.201701554 | es_ES |
dc.description.references | Girard, C., & Kagan, H. B. (1998). Nonlinear Effects in Asymmetric Synthesis and Stereoselective Reactions: Ten Years of Investigation. Angewandte Chemie International Edition, 37(21), 2922-2959. doi:10.1002/(sici)1521-3773(19981116)37:21<2922::aid-anie2922>3.0.co;2-1 | es_ES |
dc.description.references | Girard, C., & Kagan, H. B. (1998). Nichtlineare Effekte bei asymmetrischen Synthesen und stereoselektiven Reaktionen. Angewandte Chemie, 110(21), 3088-3127. doi:10.1002/(sici)1521-3757(19981102)110:21<3088::aid-ange3088>3.0.co;2-a | es_ES |
dc.description.references | Noble-Terán, M. E., Buhse, T., Cruz, J.-M., Coudret, C., & Micheau, J.-C. (2016). Nonlinear Effects in Asymmetric Synthesis: A Practical Tool for the Discrimination between Monomer and Dimer Catalysis. ChemCatChem, 8(10), 1836-1845. doi:10.1002/cctc.201600216 | es_ES |
dc.description.references | Blackmond, D. G. (2000). Kinetic Aspects of Nonlinear Effects in Asymmetric Catalysis. Accounts of Chemical Research, 33(6), 402-411. doi:10.1021/ar990083s | es_ES |
dc.description.references | Matsumoto, A., Abe, T., Hara, A., Tobita, T., Sasagawa, T., Kawasaki, T., & Soai, K. (2015). Crystal Structure of the Isopropylzinc Alkoxide of Pyrimidyl Alkanol: Mechanistic Insights for Asymmetric Autocatalysis with Amplification of Enantiomeric Excess. Angewandte Chemie International Edition, 54(50), 15218-15221. doi:10.1002/anie.201508036 | es_ES |
dc.description.references | Matsumoto, A., Abe, T., Hara, A., Tobita, T., Sasagawa, T., Kawasaki, T., & Soai, K. (2015). Crystal Structure of the Isopropylzinc Alkoxide of Pyrimidyl Alkanol: Mechanistic Insights for Asymmetric Autocatalysis with Amplification of Enantiomeric Excess. Angewandte Chemie, 127(50), 15433-15436. doi:10.1002/ange.201508036 | es_ES |
dc.description.references | Ashby, E. C., Lopp, I. G., & Buhler, J. D. (1975). Mechanisms of Grignard reactions with ketones. Polar vs. single electron transfer pathways. Journal of the American Chemical Society, 97(7), 1964-1966. doi:10.1021/ja00840a066 | es_ES |
dc.description.references | Ashby, E. C. (1988). Single-electron transfer, a major reaction pathway in organic chemistry. An answer to recent criticisms. Accounts of Chemical Research, 21(11), 414-421. doi:10.1021/ar00155a005 | es_ES |
dc.description.references | Hegstrom, R. A., & Kondepudi, D. K. (1996). Influence of static magnetic fields on chirally autocatalytic radical-pair reactions. Chemical Physics Letters, 253(3-4), 322-326. doi:10.1016/0009-2614(96)00248-5 | es_ES |
dc.description.references | K. M. Salikhov Yu. N. Molin R. Z. Sagdeev A. L. Buchachenko Spin Polarization and Magnetic Effects in Radical Reactions 1984 Akademiai Kiado Budapest Hungary 65 72 | es_ES |
dc.description.references | Welch, C. J., Zawatzky, K., Makarov, A. A., Fujiwara, S., Matsumoto, A., & Soai, K. (2017). Can the analyte-triggered asymmetric autocatalytic Soai reaction serve as a universal analytical tool for measuring enantiopurity and assigning absolute configuration? Organic & Biomolecular Chemistry, 15(1), 96-101. doi:10.1039/c6ob01939k | es_ES |
dc.description.references | Ageeva, A. A., Khramtsova, E. A., Magin, I. M., Rychkov, D. A., Purtov, P. A., Miranda, M. A., & Leshina, T. V. (2018). Spin Selectivity in Chiral Linked Systems. Chemistry - A European Journal, 24(15), 3882-3892. doi:10.1002/chem.201705863 | es_ES |
dc.description.references | Khramtsova, E. A., Sosnovsky, D. V., Ageeva, A. A., Nuin, E., Marin, M. L., Purtov, P. A., … Leshina, T. V. (2016). Impact of chirality on the photoinduced charge transfer in linked systems containing naproxen enantiomers. Physical Chemistry Chemical Physics, 18(18), 12733-12741. doi:10.1039/c5cp07305g | es_ES |
dc.description.references | Khramtsova, E. A., Ageeva, A. A., Stepanov, A. A., Plyusnin, V. F., & Leshina, T. V. (2017). Photoinduced Electron Transfer in Dyads with (R)-/(S)-Naproxen and (S)-Tryptophan. Zeitschrift für Physikalische Chemie, 231(3). doi:10.1515/zpch-2016-0842 | es_ES |
dc.description.references | Magin, I. M., Polyakov, N. E., Kruppa, A. I., Purtov, P. A., Leshina, T. V., Kiryutin, A. S., … Marin, M. L. (2016). Low field photo-CIDNP in the intramolecular electron transfer of naproxen–pyrrolidine dyads. Physical Chemistry Chemical Physics, 18(2), 901-907. doi:10.1039/c5cp04233j | es_ES |
dc.description.references | Duggan, K. C., Hermanson, D. J., Musee, J., Prusakiewicz, J. J., Scheib, J. L., Carter, B. D., … Marnett, L. J. (2011). (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nature Chemical Biology, 7(11), 803-809. doi:10.1038/nchembio.663 | es_ES |
dc.description.references | Duggan, K. C., Walters, M. J., Musee, J., Harp, J. M., Kiefer, J. R., Oates, J. A., & Marnett, L. J. (2010). Molecular Basis for Cyclooxygenase Inhibition by the Non-steroidal Anti-inflammatory Drug Naproxen. Journal of Biological Chemistry, 285(45), 34950-34959. doi:10.1074/jbc.m110.162982 | es_ES |
dc.description.references | Miners, J. O., Coulter, S., Tukey, R. H., Veronese, M. E., & Birkett, D. J. (1996). Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochemical Pharmacology, 51(8), 1003-1008. doi:10.1016/0006-2952(96)85085-4 | es_ES |
dc.description.references | Levkin, P. A., Kokorin, A. I., Schurig, V., & Kostyanovsky, R. G. (2006). Solid-state ESR differentiation between racemate versus enantiomer. Chirality, 18(4), 232-238. doi:10.1002/chir.20242 | es_ES |
dc.description.references | Khlestkin, V. K., Glasachev, Y. I., Kokorin, A. I., & Kostyanovsky, R. G. (2004). ESR study of stereochemistry in chiral nitroxide radical crystals. Mendeleev Communications, 14(6), 318-320. doi:10.1070/mc2004v014n06abeh002055 | es_ES |
dc.description.references | Mäurer, M., & Stegmann, H. B. (1990). Chiral recognition of diastereomeric esters and acetals by EPR and NMR investigations. Chemische Berichte, 123(8), 1679-1685. doi:10.1002/cber.19901230817 | es_ES |
dc.description.references | Kreilick, R. W., Becher, J., & Ullman, E. F. (1969). Stable free radicals. V. Electron spin resonance studies of nitronylnitroxide radicals with asymmetric centers. Journal of the American Chemical Society, 91(18), 5121-5124. doi:10.1021/ja01046a032 | es_ES |
dc.description.references | Schuler, P., Schaber, F.-M., Stegmann, H. B., & Janzen, E. (1999). Recognition of chirality in nitroxides using EPR and ENDOR spectroscopy. Magnetic Resonance in Chemistry, 37(11), 805-813. doi:10.1002/(sici)1097-458x(199911)37:11<805::aid-mrc543>3.0.co;2-k | es_ES |
dc.description.references | Naaman, R., & Waldeck, D. H. (2012). Chiral-Induced Spin Selectivity Effect. The Journal of Physical Chemistry Letters, 3(16), 2178-2187. doi:10.1021/jz300793y | es_ES |
dc.description.references | Yin, P., Zhang, Z.-M., Lv, H., Li, T., Haso, F., Hu, L., … Liu, T. (2015). Chiral recognition and selection during the self-assembly process of protein-mimic macroanions. Nature Communications, 6(1). doi:10.1038/ncomms7475 | es_ES |
dc.description.references | Ishida, Y., & Aida, T. (2002). Homochiral Supramolecular Polymerization of an «S»-Shaped Chiral Monomer: Translation of Optical Purity into Molecular Weight Distribution. Journal of the American Chemical Society, 124(47), 14017-14019. doi:10.1021/ja028403h | es_ES |
dc.description.references | Sato, K., Itoh, Y., & Aida, T. (2014). Homochiral supramolecular polymerization of bowl-shaped chiral macrocycles in solution. Chem. Sci., 5(1), 136-140. doi:10.1039/c3sc52449c | es_ES |
dc.description.references | Dubinets, N. O., Safonov, A. A., & Bagaturyants, A. A. (2016). Structures and Binding Energies of the Naphthalene Dimer in Its Ground and Excited States. The Journal of Physical Chemistry A, 120(17), 2779-2782. doi:10.1021/acs.jpca.6b03761 | es_ES |
dc.description.references | ‘Excimer’ fluorescence VII. Spectral studies of naphthalene and its derivatives. (1965). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 284(1399), 551-565. doi:10.1098/rspa.1965.0080 | es_ES |
dc.description.references | Jiménez, M. C., Pischel, U., & Miranda, M. A. (2007). Photoinduced processes in naproxen-based chiral dyads. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 8(3), 128-142. doi:10.1016/j.jphotochemrev.2007.10.001 | es_ES |
dc.description.references | Kerr, H. E., Softley, L. K., Suresh, K., Hodgkinson, P., & Evans, I. R. (2017). Structure and physicochemical characterization of a naproxen–picolinamide cocrystal. Acta Crystallographica Section C Structural Chemistry, 73(3), 168-175. doi:10.1107/s2053229616011980 | es_ES |
dc.description.references | Hatton, J. V., & Richards, R. E. (1962). Solvent effects in N.M.R. spectra of amide solutions. Molecular Physics, 5(2), 139-152. doi:10.1080/00268976200100141 | es_ES |
dc.description.references | Muñoz, M. ., Ferrero, R., Carmona, C., & Balón, M. (2004). Hydrogen bonding interactions between indole and benzenoid-π-bases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(1-2), 193-200. doi:10.1016/s1386-1425(03)00206-3 | es_ES |
dc.description.references | Mäurer, M., Stegmann, H. B., Hiller, W., & Müller, B. (1992). Stereoelectronic and Steric Effects in the Synthesis and Recognition of Diastereomeric Ethers by NMR and EPR Spectroscopy. Chemische Berichte, 125(4), 857-865. doi:10.1002/cber.19921250417 | es_ES |