- -

Role of association in chiral catalysis: from asymmetric synthesis to spin selectivity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Role of association in chiral catalysis: from asymmetric synthesis to spin selectivity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ageeva, A.A. es_ES
dc.contributor.author Khramtsova, E.A. es_ES
dc.contributor.author Magin, I.M. es_ES
dc.contributor.author Purtov, P.A. es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Leshina, T.V. es_ES
dc.date.accessioned 2020-07-11T03:31:05Z
dc.date.available 2020-07-11T03:31:05Z
dc.date.issued 2018-12-12 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147777
dc.description "This is the peer reviewed version of the following article: Ageeva, Aleksandra A., Ekaterina A. Khramtsova, Ilya M. Magin, Peter A. Purtov, Miguel A. Miranda, and Tatyana V. Leshina. 2018. Role of Association in Chiral Catalysis: From Asymmetric Synthesis to Spin Selectivity. Chemistry A European Journal 24 (70). Wiley: 18587 600. doi:10.1002/chem.201801625, which has been published in final form at https://doi.org/10.1002/chem.201801625. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] The origin of biomolecules in the pre-biological period is still a matter of debate, as is the unclarified nature of the differences in enantiomer properties, especially for the medically important activity of chiral drugs. With regards to the first issue, significant progress was made in the last decade of the 20th century through experimental confirmation of Frank's popular theory on chiral catalysis in spontaneous asymmetric synthesis. Soai examined the chiral catalysis of the alkylation of achiral aldehydes by achiral reagents. Attempts to model this process demonstrated the key role of chiral compounds associates as templates for chiral synthesis. However, the elementary mechanism of alkylation and the role of free radicals in this process are still incompletely understood. Meanwhile, the influence of external magnetic fields on chiral enrichment in the radical path of alkylation has been predicted. In addition, the role of chiral dyad association in another radical process, electron transfer (ET), has been recently demonstrated by the following methods: chemically induced dynamic nuclear polarisation (CIDNP), NMR spectroscopy, XRD and photochemistry. The CIDNP analysis of ET in two dyads has revealed a phenomenon first observed for chiral systems, spin selectivity, which results in the difference between the CIDNP enhancement coefficients of dyad diastereomers. These dyads are linked systems consisting of the widespread drug (S)-naproxen (NPX) or its R analogue and electron donors, namely, (S)-tryptophan and (S)-N-methylpyrrolidine. Because NPX is one of the most striking examples of the difference in the therapeutic properties of enantiomers, the appearance of spin selectivity in dyads with (S)- and (R)-NPX and S donors can shed light on the chemical nature of these differences. This review is devoted to discussing the chemical nature of spin selectivity and the role of chiral associates in the chiral catalysis of an elementary radical reaction: ET in chiral dyads. es_ES
dc.description.sponsorship The work was supported by the Russian Science Foundation (18-13-00047). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Asymmetric catalysis es_ES
dc.subject Chirality es_ES
dc.subject Electron transfer es_ES
dc.subject Enantioselectivity es_ES
dc.subject Spin selectivity es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Role of association in chiral catalysis: from asymmetric synthesis to spin selectivity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201801625 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RFBR//8-13-00047/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Ageeva, A.; Khramtsova, E.; Magin, I.; Purtov, P.; Miranda Alonso, MÁ.; Leshina, T. (2018). Role of association in chiral catalysis: from asymmetric synthesis to spin selectivity. Chemistry - A European Journal. 24(70):18587-18600. https://doi.org/10.1002/chem.201801625 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201801625 es_ES
dc.description.upvformatpinicio 18587 es_ES
dc.description.upvformatpfin 18600 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 70 es_ES
dc.identifier.pmid 29932476 es_ES
dc.relation.pasarela S\388446 es_ES
dc.contributor.funder Russian Science Foundation es_ES
dc.description.references Avalos, M., Babiano, R., Cintas, P., Jiménez, J. L., Palacios, J. C., & Barron, L. D. (1998). Absolute Asymmetric Synthesis under Physical Fields:  Facts and Fictions. Chemical Reviews, 98(7), 2391-2404. doi:10.1021/cr970096o es_ES
dc.description.references Lin, G.-Q., Zhang, J.-G., & Cheng, J.-F. (2011). Overview of Chirality and Chiral Drugs. Chiral Drugs, 3-28. doi:10.1002/9781118075647.ch1 es_ES
dc.description.references Liu, Y., & Gu, X.-H. (2011). Pharmacology of Chiral Drugs. Chiral Drugs, 323-345. doi:10.1002/9781118075647.ch8 es_ES
dc.description.references Frank, F. C. (1953). On spontaneous asymmetric synthesis. Biochimica et Biophysica Acta, 11, 459-463. doi:10.1016/0006-3002(53)90082-1 es_ES
dc.description.references Soai, K., Kawasaki, T., & Matsumoto, A. (2014). Asymmetric Autocatalysis of Pyrimidyl Alkanol and Its Application to the Study on the Origin of Homochirality. Accounts of Chemical Research, 47(12), 3643-3654. doi:10.1021/ar5003208 es_ES
dc.description.references Soai, K., Kawasaki, T., & Matsumoto, A. (2014). The Origins of Homochirality Examined by Using Asymmetric Autocatalysis. The Chemical Record, 14(1), 70-83. doi:10.1002/tcr.201300028 es_ES
dc.description.references Soai, K., Matsumoto, A., & Kawasaki, T. (2017). Asymmetric Autocatalysis and the Origins of Homochirality of Organic Compounds. An Overview. Advances in Asymmetric Autocatalysis and Related Topics, 1-30. doi:10.1016/b978-0-12-812824-4.00001-0 es_ES
dc.description.references Matsumoto, A., Kawasaki, T., & Soai, K. (2017). Structural Study of Asymmetric Autocatalysis by X-Ray Crystallography. Advances in Asymmetric Autocatalysis and Related Topics, 183-202. doi:10.1016/b978-0-12-812824-4.00010-1 es_ES
dc.description.references Schiaffino, L., & Ercolani, G. (2010). Mechanism of the Asymmetric Autocatalytic Soai Reaction Studied by Density Functional Theory. Chemistry - A European Journal, 16(10), 3147-3156. doi:10.1002/chem.200902543 es_ES
dc.description.references Buono, F. G., & Blackmond, D. G. (2003). Kinetic Evidence for a Tetrameric Transition State in the Asymmetric Autocatalytic Alkylation of Pyrimidyl Aldehydes†. Journal of the American Chemical Society, 125(30), 8978-8979. doi:10.1021/ja034705n es_ES
dc.description.references Gridnev, I. D., & Vorobiev, A. K. (2012). Quantification of Sophisticated Equilibria in the Reaction Pool and Amplifying Catalytic Cycle of the Soai Reaction. ACS Catalysis, 2(10), 2137-2149. doi:10.1021/cs300497h es_ES
dc.description.references Gridnev, I. D., Serafimov, J. M., & Brown, J. M. (2004). Solution Structure and Reagent Binding of the Zinc Alkoxide Catalyst in the Soai Asymmetric Autocatalytic Reaction. Angewandte Chemie International Edition, 43(37), 4884-4887. doi:10.1002/anie.200353572 es_ES
dc.description.references Gridnev, I. D., Serafimov, J. M., & Brown, J. M. (2004). Solution Structure and Reagent Binding of the Zinc Alkoxide Catalyst in the Soai Asymmetric Autocatalytic Reaction. Angewandte Chemie, 116(37), 4992-4995. doi:10.1002/ange.200353572 es_ES
dc.description.references Noble-Terán, M. E., Cruz, J.-M., Micheau, J.-C., & Buhse, T. (2018). A Quantification of the Soai Reaction. ChemCatChem, 10(3), 642-648. doi:10.1002/cctc.201701554 es_ES
dc.description.references Girard, C., & Kagan, H. B. (1998). Nonlinear Effects in Asymmetric Synthesis and Stereoselective Reactions: Ten Years of Investigation. Angewandte Chemie International Edition, 37(21), 2922-2959. doi:10.1002/(sici)1521-3773(19981116)37:21<2922::aid-anie2922>3.0.co;2-1 es_ES
dc.description.references Girard, C., & Kagan, H. B. (1998). Nichtlineare Effekte bei asymmetrischen Synthesen und stereoselektiven Reaktionen. Angewandte Chemie, 110(21), 3088-3127. doi:10.1002/(sici)1521-3757(19981102)110:21<3088::aid-ange3088>3.0.co;2-a es_ES
dc.description.references Noble-Terán, M. E., Buhse, T., Cruz, J.-M., Coudret, C., & Micheau, J.-C. (2016). Nonlinear Effects in Asymmetric Synthesis: A Practical Tool for the Discrimination between Monomer and Dimer Catalysis. ChemCatChem, 8(10), 1836-1845. doi:10.1002/cctc.201600216 es_ES
dc.description.references Blackmond, D. G. (2000). Kinetic Aspects of Nonlinear Effects in Asymmetric Catalysis. Accounts of Chemical Research, 33(6), 402-411. doi:10.1021/ar990083s es_ES
dc.description.references Matsumoto, A., Abe, T., Hara, A., Tobita, T., Sasagawa, T., Kawasaki, T., & Soai, K. (2015). Crystal Structure of the Isopropylzinc Alkoxide of Pyrimidyl Alkanol: Mechanistic Insights for Asymmetric Autocatalysis with Amplification of Enantiomeric Excess. Angewandte Chemie International Edition, 54(50), 15218-15221. doi:10.1002/anie.201508036 es_ES
dc.description.references Matsumoto, A., Abe, T., Hara, A., Tobita, T., Sasagawa, T., Kawasaki, T., & Soai, K. (2015). Crystal Structure of the Isopropylzinc Alkoxide of Pyrimidyl Alkanol: Mechanistic Insights for Asymmetric Autocatalysis with Amplification of Enantiomeric Excess. Angewandte Chemie, 127(50), 15433-15436. doi:10.1002/ange.201508036 es_ES
dc.description.references Ashby, E. C., Lopp, I. G., & Buhler, J. D. (1975). Mechanisms of Grignard reactions with ketones. Polar vs. single electron transfer pathways. Journal of the American Chemical Society, 97(7), 1964-1966. doi:10.1021/ja00840a066 es_ES
dc.description.references Ashby, E. C. (1988). Single-electron transfer, a major reaction pathway in organic chemistry. An answer to recent criticisms. Accounts of Chemical Research, 21(11), 414-421. doi:10.1021/ar00155a005 es_ES
dc.description.references Hegstrom, R. A., & Kondepudi, D. K. (1996). Influence of static magnetic fields on chirally autocatalytic radical-pair reactions. Chemical Physics Letters, 253(3-4), 322-326. doi:10.1016/0009-2614(96)00248-5 es_ES
dc.description.references K. M. Salikhov Yu. N. Molin R. Z. Sagdeev A. L. Buchachenko Spin Polarization and Magnetic Effects in Radical Reactions 1984 Akademiai Kiado Budapest Hungary 65 72 es_ES
dc.description.references Welch, C. J., Zawatzky, K., Makarov, A. A., Fujiwara, S., Matsumoto, A., & Soai, K. (2017). Can the analyte-triggered asymmetric autocatalytic Soai reaction serve as a universal analytical tool for measuring enantiopurity and assigning absolute configuration? Organic & Biomolecular Chemistry, 15(1), 96-101. doi:10.1039/c6ob01939k es_ES
dc.description.references Ageeva, A. A., Khramtsova, E. A., Magin, I. M., Rychkov, D. A., Purtov, P. A., Miranda, M. A., & Leshina, T. V. (2018). Spin Selectivity in Chiral Linked Systems. Chemistry - A European Journal, 24(15), 3882-3892. doi:10.1002/chem.201705863 es_ES
dc.description.references Khramtsova, E. A., Sosnovsky, D. V., Ageeva, A. A., Nuin, E., Marin, M. L., Purtov, P. A., … Leshina, T. V. (2016). Impact of chirality on the photoinduced charge transfer in linked systems containing naproxen enantiomers. Physical Chemistry Chemical Physics, 18(18), 12733-12741. doi:10.1039/c5cp07305g es_ES
dc.description.references Khramtsova, E. A., Ageeva, A. A., Stepanov, A. A., Plyusnin, V. F., & Leshina, T. V. (2017). Photoinduced Electron Transfer in Dyads with (R)-/(S)-Naproxen and (S)-Tryptophan. Zeitschrift für Physikalische Chemie, 231(3). doi:10.1515/zpch-2016-0842 es_ES
dc.description.references Magin, I. M., Polyakov, N. E., Kruppa, A. I., Purtov, P. A., Leshina, T. V., Kiryutin, A. S., … Marin, M. L. (2016). Low field photo-CIDNP in the intramolecular electron transfer of naproxen–pyrrolidine dyads. Physical Chemistry Chemical Physics, 18(2), 901-907. doi:10.1039/c5cp04233j es_ES
dc.description.references Duggan, K. C., Hermanson, D. J., Musee, J., Prusakiewicz, J. J., Scheib, J. L., Carter, B. D., … Marnett, L. J. (2011). (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nature Chemical Biology, 7(11), 803-809. doi:10.1038/nchembio.663 es_ES
dc.description.references Duggan, K. C., Walters, M. J., Musee, J., Harp, J. M., Kiefer, J. R., Oates, J. A., & Marnett, L. J. (2010). Molecular Basis for Cyclooxygenase Inhibition by the Non-steroidal Anti-inflammatory Drug Naproxen. Journal of Biological Chemistry, 285(45), 34950-34959. doi:10.1074/jbc.m110.162982 es_ES
dc.description.references Miners, J. O., Coulter, S., Tukey, R. H., Veronese, M. E., & Birkett, D. J. (1996). Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochemical Pharmacology, 51(8), 1003-1008. doi:10.1016/0006-2952(96)85085-4 es_ES
dc.description.references Levkin, P. A., Kokorin, A. I., Schurig, V., & Kostyanovsky, R. G. (2006). Solid-state ESR differentiation between racemate versus enantiomer. Chirality, 18(4), 232-238. doi:10.1002/chir.20242 es_ES
dc.description.references Khlestkin, V. K., Glasachev, Y. I., Kokorin, A. I., & Kostyanovsky, R. G. (2004). ESR study of stereochemistry in chiral nitroxide radical crystals. Mendeleev Communications, 14(6), 318-320. doi:10.1070/mc2004v014n06abeh002055 es_ES
dc.description.references Mäurer, M., & Stegmann, H. B. (1990). Chiral recognition of diastereomeric esters and acetals by EPR and NMR investigations. Chemische Berichte, 123(8), 1679-1685. doi:10.1002/cber.19901230817 es_ES
dc.description.references Kreilick, R. W., Becher, J., & Ullman, E. F. (1969). Stable free radicals. V. Electron spin resonance studies of nitronylnitroxide radicals with asymmetric centers. Journal of the American Chemical Society, 91(18), 5121-5124. doi:10.1021/ja01046a032 es_ES
dc.description.references Schuler, P., Schaber, F.-M., Stegmann, H. B., & Janzen, E. (1999). Recognition of chirality in nitroxides using EPR and ENDOR spectroscopy. Magnetic Resonance in Chemistry, 37(11), 805-813. doi:10.1002/(sici)1097-458x(199911)37:11<805::aid-mrc543>3.0.co;2-k es_ES
dc.description.references Naaman, R., & Waldeck, D. H. (2012). Chiral-Induced Spin Selectivity Effect. The Journal of Physical Chemistry Letters, 3(16), 2178-2187. doi:10.1021/jz300793y es_ES
dc.description.references Yin, P., Zhang, Z.-M., Lv, H., Li, T., Haso, F., Hu, L., … Liu, T. (2015). Chiral recognition and selection during the self-assembly process of protein-mimic macroanions. Nature Communications, 6(1). doi:10.1038/ncomms7475 es_ES
dc.description.references Ishida, Y., & Aida, T. (2002). Homochiral Supramolecular Polymerization of an «S»-Shaped Chiral Monomer:  Translation of Optical Purity into Molecular Weight Distribution. Journal of the American Chemical Society, 124(47), 14017-14019. doi:10.1021/ja028403h es_ES
dc.description.references Sato, K., Itoh, Y., & Aida, T. (2014). Homochiral supramolecular polymerization of bowl-shaped chiral macrocycles in solution. Chem. Sci., 5(1), 136-140. doi:10.1039/c3sc52449c es_ES
dc.description.references Dubinets, N. O., Safonov, A. A., & Bagaturyants, A. A. (2016). Structures and Binding Energies of the Naphthalene Dimer in Its Ground and Excited States. The Journal of Physical Chemistry A, 120(17), 2779-2782. doi:10.1021/acs.jpca.6b03761 es_ES
dc.description.references ‘Excimer’ fluorescence VII. Spectral studies of naphthalene and its derivatives. (1965). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 284(1399), 551-565. doi:10.1098/rspa.1965.0080 es_ES
dc.description.references Jiménez, M. C., Pischel, U., & Miranda, M. A. (2007). Photoinduced processes in naproxen-based chiral dyads. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 8(3), 128-142. doi:10.1016/j.jphotochemrev.2007.10.001 es_ES
dc.description.references Kerr, H. E., Softley, L. K., Suresh, K., Hodgkinson, P., & Evans, I. R. (2017). Structure and physicochemical characterization of a naproxen–picolinamide cocrystal. Acta Crystallographica Section C Structural Chemistry, 73(3), 168-175. doi:10.1107/s2053229616011980 es_ES
dc.description.references Hatton, J. V., & Richards, R. E. (1962). Solvent effects in N.M.R. spectra of amide solutions. Molecular Physics, 5(2), 139-152. doi:10.1080/00268976200100141 es_ES
dc.description.references Muñoz, M. ., Ferrero, R., Carmona, C., & Balón, M. (2004). Hydrogen bonding interactions between indole and benzenoid-π-bases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(1-2), 193-200. doi:10.1016/s1386-1425(03)00206-3 es_ES
dc.description.references Mäurer, M., Stegmann, H. B., Hiller, W., & Müller, B. (1992). Stereoelectronic and Steric Effects in the Synthesis and Recognition of Diastereomeric Ethers by NMR and EPR Spectroscopy. Chemische Berichte, 125(4), 857-865. doi:10.1002/cber.19921250417 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem