- -

Radiofrequency heating of the cornea: an engineering review of electrodes and applicators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Radiofrequency heating of the cornea: an engineering review of electrodes and applicators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Berjano, Enrique es_ES
dc.contributor.author Navarro, Enrique es_ES
dc.contributor.author Ribera, Vicente es_ES
dc.contributor.author Gorris, Javier es_ES
dc.contributor.author Alió, Jorge L. es_ES
dc.date.accessioned 2020-07-11T03:31:19Z
dc.date.available 2020-07-11T03:31:19Z
dc.date.issued 2007-12-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147783
dc.description.abstract [EN] This paper reviews the different applicators and electrodes employed to create localized heating in the cornea by means of the application of radiofrequency (RF) currents. Thermokeratoplasty (TKP) is probably the best known of these techniques and is based on the principle that heating corneal tissue (particularly the central part of the corneal tissue, i.e. the central stroma) causes collagen to shrink, and hence changes the corneal curvature. Firstly, we point out that TKP techniques are a complex challenge from the engineering point of view, due to the fact that it is necessary to create very localized heating in a precise location (central stroma), within a narrow temperature range (from 58 to 76ºC). Secondly, we describe the different applicator designs (i.e. RF electrodes) proposed and tested to date. This review is planned from a technical point of view, i.e. the technical developments are classified and described taking into consideration technical criteria, such as energy delivery mode (monopolar versus bipolar), thermal conditions (dry versus cooled electrodes), lesion pattern (focal versus circular lesions), and application placement (surface versus intrastromal). es_ES
dc.description.sponsorship This work was partially supported by the Programa de Investigación y Desarrollo Tecnológico 2007 (Ref: IMIDTA/2007/586) of the Institut de la Petita i Mitjana Indústria de la Comunitat Valenciana (IMPIVA-Generalitat Valenciana), and by the "Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica del Ministerio de Educación y Ciencia" of Spain (TEC 2005-04199/TCM). We would like to thank the R+D+i Linguistic Assistance Office at the Technical University of Valencia for their help in revising this paper. es_ES
dc.language Inglés es_ES
dc.publisher Bentham Science es_ES
dc.relation.ispartof The Open Biomedical Engineering Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Radiofrequency heating of the cornea: an engineering review of electrodes and applicators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2174/1874120700701010071 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IMIDTA%2F2007%2F586/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//TEC2005-04199/ES/MODELOS TEORICOS Y COMPUTACION AVANZADA EN EL ESTUDIO DE SEÑALES BIOELECTRICAS EN CELULAS Y TEJIDOS. IMPLICACIONES EN EL ANALISIS DE ARRITMIAS CARDIACAS, ELECTROESTIMULACION Y ABLACION POR RADIOFR.../ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Berjano, E.; Navarro, E.; Ribera, V.; Gorris, J.; Alió, JL. (2007). Radiofrequency heating of the cornea: an engineering review of electrodes and applicators. The Open Biomedical Engineering Journal. 1:71-76. https://doi.org/10.2174/1874120700701010071 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2174/1874120700701010071 es_ES
dc.description.upvformatpinicio 71 es_ES
dc.description.upvformatpfin 76 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.identifier.eissn 1874-1207 es_ES
dc.identifier.pmid 19662131 es_ES
dc.identifier.pmcid PMC2701077 es_ES
dc.relation.pasarela S\31953 es_ES
dc.contributor.funder Instituto de la Pequeña y Mediana Industria de la Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Mendez-Gutierrez A. “Review of thermokeratoplasty developments,” In: Pinelli JR, Pascucci SE, Eds. Conductive keratoplasty A primer. Thorofare: SLACK 2005; pp. 3-8. es_ES
dc.description.references Ismail MM, Pérez-Santonja JJ, Alió JL JL. “Correction of the hyperopia and hyperopic astigmatism by laser thermokeratoplasty,” In: Serdarevic ON, Ed. Refractive Surgery: Current Techniques and Management. New York: Igaku-Shoin 1997; pp. 263-74. es_ES
dc.description.references Shaw EL, Gasset AR. “Thermokeratoplasty (TKP) temperature profile,” Invest Ophthalmol 1974; 13 : 181-6. es_ES
dc.description.references Gasset AR, Kaufman HE. “Thermokeratoplasty in the treatment of keratoconus,” A J Ophthalmol 1975; 79 : 226-32. es_ES
dc.description.references Trembly BS, Hashizume N, Moodie KL, Cohen KL, Tripoli NK, Hoopes PJ. “Microwave thermal keratoplasty for myopia: keratoscopic evaluation in porcine eyes,” J Refract Surg 2001 Nov-Dec; 17 (6) : 682-8. es_ES
dc.description.references Trembly BS, Keates RH. “Combined microwave heating and surface cooling of the cornea,” IEEE Trans Biomed Eng 1991 Jan; 38 : 85-91. es_ES
dc.description.references Trembly BS, Crump RA. “Combined microwave heating and surface cooling of the cornea,” US Patent 4 881 453, Nov 21,1989 es_ES
dc.description.references Rutzen CA, Roberts RW, Driller J, et al. “Production of corneal lesions using high-intensity focused ultrasound,” Cornea 1990 Oct; 9 : 324-30. es_ES
dc.description.references Mark DB, Beuerman R. “Intracorneal lesions produced with focused ultrasound,” Curr Eye Res 1982-1983; 2 : 323-6. es_ES
dc.description.references Klopotek PJ. “Meted and apparatus for generating localized hyperthermia,” US Patent 5 230 334, Jul 27, 1993 es_ES
dc.description.references Doss JD, Rowsey JJ. “A technique for the selective heating of corneal stroma,” Contact Intraocul Lens Med J 1980 Jan-Mar; 6 : 13-7. es_ES
dc.description.references Doss JD, Hutson RL. “Corneal-chaping electrode,” US Patent 4 326 529, Apr 27 1982. es_ES
dc.description.references Rowsey JJ JJ, Gaylor JR, Dahlstrom R, Doss JD. “Los Alamos keratoplasty techniques,” Contact Intraocul Lens Med J 1980 Jan-Mar; 6 : 1-12. es_ES
dc.description.references Rowsey JJ, Doss JD. “Preliminary report of Los Alamos Keratoplasty Techniques,” Ophthalmol 1981 Aug; 88 : 755-60. es_ES
dc.description.references McDonnell PJ, Garbus J, Romero JL, Rao NA, Schanzlin DJ. “Electrosurgical keratoplasty. Clinicopathologic correlation,” Arch Ophthalmol 1988 Feb; 106 : 235-8. es_ES
dc.description.references Rowsey JJ. “Electrosurgical keratoplasty: update and retraction,” Invest Ophthalmol Vis Sci 1987; 28 : 224. es_ES
dc.description.references Doss JD. “Multipolar corneal-shaping electrode with flexible removable skirt,” US Patent 4 381 007, Apr 26 1983. es_ES
dc.description.references Trembly BS. “Thermokeratoplasty systems,” US Patent 7 192 429, Mar 20 2007. es_ES
dc.description.references Doss JD. “Electrothermal treatment of cancer eye,” Los Alamos Scientific Laboratory Mini-review 1977 Aug; 77-14. es_ES
dc.description.references Neumann SM, Kainer RA, Severin GA. “Reaction of normal equine eyes to radio-frequency current-induced hyperthermia,” A J Vet Res 1982; 43 : 1938-44. es_ES
dc.description.references Glaze MB, Turk MA. “Effects of radiofrequency hyperthermia on the healthy canine cornea,” A J Vet Res 1986; 47 : 913-8. es_ES
dc.description.references Fugo RJ. “Method of ocular refractive surgery,” US Patent 5 423 815, Jun 13 1995. es_ES
dc.description.references Mendez A, Mendez Noble A. “Conductive keratoplasty for the correction of hyperopia,” In: Sher NA, Ed. Surgery for hyperopia and presbyopia. Baltimore: Williams & Wilkins 1997; pp. 163-71. es_ES
dc.description.references Hood L, Mendez AG. “Method and apparatus for modifications of visual acuity by thermal means,” US Patent 5 533 999, Jul 9 1996. es_ES
dc.description.references Berjano EJ, Saiz J, Ferrero JM. “Radio-frequency heating of the cornea theoretical model and in vitro experiments” IEEE Trans Biomed Eng 2002 Mar; 49 : 196-205. es_ES
dc.description.references Mulet ME, Alió JL, Salem TF, Berjano EJ. “Corneal thermal lesions with radiofrequency currents for thermokeratoplasty,” Invest Ophthalmol Vis Sci 2000; 41 : S919. es_ES
dc.description.references Berjano EJ, Saiz J, Alio JL, Ferrero JM. “Ring electrode for radio-frequency heating of the cornea: modelling and in vitro experiments,” Med Biol Eng Comput 2003 Nov; 41 : 630-9. es_ES
dc.description.references Goth PR, Panescu D, Khalaj S. “Thermokeratoplasty system with a guided probe tip,” US Patent 2005/0245949 A1, Nov 3 2005. es_ES
dc.description.references Valle M, Khalaj S, Hood L, Panescu D. “Method and apparatus to automatically insert a probe into a cornea,” US Patent 2006/0184166 A1, Aug 17 2006. es_ES
dc.description.references Hood L. “Thermokeratoplasty system with a power supply that can determine a wet or dry cornea,” US Patent 6,673,069 B1, Jan 6 2004. es_ES
dc.description.references Paulino LV, Paulino E, Barros RA, Salles AG, Rehder JR. “Corneal topographic alteration after radiofrequency application to an animal model,” Arq Bras Oftalmol 2005 Jul-Aug; 68 : 415-56. es_ES
dc.description.references Lyra JM, Trindade FC, Lyra D, Bezerra A. “Outcomes of radiofrequency in advanced keratoconus,” J Cataract Refract Surg 2007 Jul; 33 : 1288-95. es_ES
dc.description.references Choi B, Kim J, Welch AJ, Pearce JA. “Dynamic impedance measurements during radio-frequency heating of cornea,” IEEE Trans Biomed Eng 2002 Dec; 49 : 1610-6. es_ES
dc.description.references Pearce JA, Ikei C. “Increasing corneal curvature by RF current: numerical model studies of governing physical processes,” Proc SPIE 2007; 6640. es_ES
dc.description.references Pearce J, Panescu D, Thomsen S. “Simulation of diopter changes in radio frequency conductive keratoplasty in the cornea,” WIT Trans Biomed Health 2005; 8 : 469-77. es_ES
dc.description.references Pearce JA, Panescu D. “Radio frequency conductive keratoplasty in the cornea: prediction of diopter changes in numerical models,” In: Proc. 26th Annual Int. Conf. IEEE EMBS; 2004; pp. 5426-9. es_ES
dc.description.references Pearce JA. “Numerical model study of radio frequency conductive keratoplasty in the cornea for correction of hyperopia,” In: Proc Second Joint EMBS/BMES Conf; 2002; pp. 2149-50. es_ES
dc.description.references Berjano EJ, Alio JL, Saiz J. “Modeling for radio-frequency conductive keratoplasty: implications for the maximum temperature reached in the cornea,” Physiol Meas 2005 Jun; 26 : 157-72. es_ES
dc.description.references Woo EJ, Tungjitkusolmun S, Cao H, et al. “A new catheter design using needle electrode for subendocardial RF ablation of ventricular muscles: finite element analysis and in vitro experiments,” IEEE Trans Biomed Eng 2000 Jan; 47 : 23-31. es_ES
dc.description.references Berjano EJ, Saiz J, Ferrero JM, Alió J. “Effect of the termal conductivity of the intra-tissue active electrode during RF electrocoagulation,” In: Proc XVI Annual Congress Spanish Soc. Biomed. Eng; 1998; pp. 23-5. es_ES
dc.description.references Silvestrini TA. “Electrosurgical procedure for treatment of the cornea,” US Patent 5 766 171, Jun 16 1998. es_ES
dc.description.references Berjano EJ. “Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future,” Biomed Eng Online 2006; 18 (5) : 24. es_ES
dc.description.references Alio JL, Claramonte PJ, Caliz A, Ramzy MI. “Corneal modeling of keratoconus by conductive keratoplasty,” J Cataract Refract Surg 2005 Jan; 31 : 190-7. es_ES
dc.description.references McDonald MB, Hersh PS, Manche EE, Maloney RK, Davidorf J, Sabry M. “Conductive Keratoplasty United States Investigators Group. Conductive keratoplasty for the correction of low to moderate hyperopia: U.S. clinical trial 1-year results on 355 eyes,” Ophthalmol 2002 Nov; 109 : 1978-89. es_ES
dc.description.references Comaish IF, Lawless MA. Conductive keratoplasty to correct residual hyperopia after corneal surgery J Cataract Refract Surg 2003 Jan; 29 : 202-6. es_ES
dc.description.references Pallikaris IG, Naoumidi TL, Astyrakakis NI. “Conductive keratoplasty to correct hyperopic astigmatism,” J Refract Surg 2003 Jul-Aug; 19 : 425-32. es_ES
dc.description.references McDonald MB, Durrie D, Asbell P, Maloney R, Nichamin L. “Treatment of presbyopia with conductive keratoplasty: six-month results of the 1-year United States FDA clinical trial,” Cornea 2004 Oct; 23 : 661-8. es_ES
dc.description.references Strauss GH. “Mechanism of Conductive Keratoplasty,” In: Pinelli JR, Pascucci SE, Eds. Conductive keratoplasty A primer. Thorofare: SLACK 2005; pp. 11-9. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem