- -

Bimetallic Oriented (Au/Cu2O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bimetallic Oriented (Au/Cu2O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Simion, Andrada es_ES
dc.contributor.author Candu, Natalia es_ES
dc.contributor.author Coman, Simona M. es_ES
dc.contributor.author Primo Arnau, Ana Maria es_ES
dc.contributor.author Esteve-Adell, Iván es_ES
dc.contributor.author Michelet, Veronique es_ES
dc.contributor.author Parvulescu, Vasile I. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2020-07-14T03:30:59Z
dc.date.available 2020-07-14T03:30:59Z
dc.date.issued 2018-12-02 es_ES
dc.identifier.issn 1434-193X es_ES
dc.identifier.uri http://hdl.handle.net/10251/147914
dc.description "This is the peer reviewed version of the following article: Simion, Andrada, Natalia Candu, Simona M. Coman, Ana Primo, Ivan Esteve-Adell, Véronique Michelet, Vasile I. Parvulescu, and Hermenegildo Garcia. 2018. Bimetallic Oriented (Au /Cu2 O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2 O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry 2018 (44). Wiley: 6185 90. doi:10.1002/ejoc.201801443, which has been published in final form at https://doi.org/10.1002/ejoc.201801443. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] Michael and Henry addition reactions have been investigated using mono (Au and Cu2O) and bimetallic nanoplatelets (Au/Cu2O) grafted onto few-layers graphene (fl-G) films as heterogeneous catalysts by comparison with homogeneous NaOH and K2CO3 ones. In the presence of the heterogeneous catalysts, these reactions occurred in the absence of any extrinsic (NaOH and K2CO3) base with turnover numbers (TONs) at least four orders of magnitude higher. While the homogeneous catalysts provided TONs close to the unity for Au/Cu2O/fl-G this was of the order of 10(7). These reactions also occurred with a very good selectivity to the targeted products. These performances are in line with the basicity of these catalysts demonstrated from CO2 chemisorption measurements. The effect of the nanosize and the interaction of the nanoparticles with the graphene are also important to achieve this high activity. es_ES
dc.description.sponsorship This work was supported by the Ministere de l' Education, de la Recherche et des Affaires Etrangeres (Brancusi Program) of France (PN-III-CEI-BIM-PM, nr. 80BM/2017), UEFISCDI (PN-III-P4-ID-PCE-2016-0146, nr. 121/2017) and COST Action CA15106 (CHAOS) es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof European Journal of Organic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Graphene es_ES
dc.subject Copper es_ES
dc.subject Gold es_ES
dc.subject Heterogeneous catalysts es_ES
dc.subject Nanoplatelets es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Bimetallic Oriented (Au/Cu2O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ejoc.201801443 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-III-P4-ID-PCE-2016-0146 121%2F2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA15106/EU/C-H Activation in Organic Synthesis (CHAOS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-III-CEI-BIM-PM 80BM%2F2017/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología Eléctrica - Institut de Tecnologia Elèctrica es_ES
dc.description.bibliographicCitation Simion, A.; Candu, N.; Coman, SM.; Primo Arnau, AM.; Esteve-Adell, I.; Michelet, V.; Parvulescu, VI.... (2018). Bimetallic Oriented (Au/Cu2O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry. 2018(44):6185-6190. https://doi.org/10.1002/ejoc.201801443 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/ejoc.201801443 es_ES
dc.description.upvformatpinicio 6185 es_ES
dc.description.upvformatpfin 6190 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2018 es_ES
dc.description.issue 44 es_ES
dc.relation.pasarela S\382619 es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation, Francia es_ES
dc.contributor.funder Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding, Rumanía es_ES
dc.description.references Michael, A. (1887). Ueber die Addition von Natriumacetessig- und Natriummalonsäureäthern zu den Aethern ungesättigter Säuren. Journal für Praktische Chemie, 35(1), 349-356. doi:10.1002/prac.18870350136 es_ES
dc.description.references Michael, A. (1894). Ueber die Addition von Natriumacetessig- und Natriummalonsäureäther zu den Aethern ungesättigter Säuren. Journal für Praktische Chemie, 49(1), 20-25. doi:10.1002/prac.18940490103 es_ES
dc.description.references Tokoroyama, T. (2010). Discovery of the Michael Reaction. European Journal of Organic Chemistry, 2010(10), 2009-2016. doi:10.1002/ejoc.200901130 es_ES
dc.description.references Huebner, C. F., Sullivan, W. R., Stahmann, M. A., & Link, K. P. (1943). Studies on 4-Hydroxycoumarin. III. Dehydration of the Aldehyde Condensation Products1. Journal of the American Chemical Society, 65(12), 2292-2296. doi:10.1021/ja01252a009 es_ES
dc.description.references Mukaiyama, T. (1977). Titanium Tetrachloride in Organic Synthesis[New synthetic methods(21)]. Angewandte Chemie International Edition in English, 16(12), 817-826. doi:10.1002/anie.197708171 es_ES
dc.description.references Mukaiyama, T. (1977). Titantetrachlorid in der organischen Synthese. Angewandte Chemie, 89(12), 858-866. doi:10.1002/ange.19770891205 es_ES
dc.description.references Pansare, S. V., & Pandya, K. (2006). Simple Diamine- and Triamine-Protonic Acid Catalysts for the Enantioselective Michael Addition of Cyclic Ketones to Nitroalkenes. Journal of the American Chemical Society, 128(30), 9624-9625. doi:10.1021/ja062701n es_ES
dc.description.references Ikawa, M., Stahmann, M. A., & Link, K. P. (1944). Studies on 4-Hydroxycoumarins. V. The Condensation of α,β-Unsaturated Ketones with 4-Hydroxycoumarin1. Journal of the American Chemical Society, 66(6), 902-906. doi:10.1021/ja01234a019 es_ES
dc.description.references Iwamura, M., Gotoh, Y., Hashimoto, T., & Sakurai, R. (2005). Michael addition reactions of acetoacetates and malonates with acrylates in water under strongly alkaline conditions. Tetrahedron Letters, 46(37), 6275-6277. doi:10.1016/j.tetlet.2005.07.045 es_ES
dc.description.references Xu, X., Hu, W.-H., & Doyle, M. P. (2011). Highly Enantioselective Catalytic Synthesis of Functionalized Chiral Diazoacetoacetates. Angewandte Chemie International Edition, 50(28), 6392-6395. doi:10.1002/anie.201102405 es_ES
dc.description.references Xu, X., Hu, W.-H., & Doyle, M. P. (2011). Highly Enantioselective Catalytic Synthesis of Functionalized Chiral Diazoacetoacetates. Angewandte Chemie, 123(28), 6516-6519. doi:10.1002/ange.201102405 es_ES
dc.description.references Martinez, R., Simon, M.-O., Chevalier, R., Pautigny, C., Genet, J.-P., & Darses, S. (2009). C−C Bond Formation via C−H Bond Activation Using an in Situ-Generated Ruthenium Catalyst. Journal of the American Chemical Society, 131(22), 7887-7895. doi:10.1021/ja9017489 es_ES
dc.description.references Halland, N., Hansen, T., & Jørgensen, K. A. (2003). Organocatalytic Asymmetric Michael Reaction of Cyclic 1,3-Dicarbonyl Compounds andα,β-Unsaturated Ketones—A Highly Atom-Economic Catalytic One-Step Formation of Optically Active Warfarin Anticoagulant. Angewandte Chemie International Edition, 42(40), 4955-4957. doi:10.1002/anie.200352136 es_ES
dc.description.references Halland, N., Hansen, T., & Jørgensen, K. A. (2003). Organocatalytic Asymmetric Michael Reaction of Cyclic 1,3-Dicarbonyl Compounds andα,β-Unsaturated Ketones—A Highly Atom-Economic Catalytic One-Step Formation of Optically Active Warfarin Anticoagulant. Angewandte Chemie, 115(40), 5105-5107. doi:10.1002/ange.200352136 es_ES
dc.description.references Izquierdo, J., & Pericàs, M. A. (2015). A Recyclable, Immobilized Analogue of Benzotetramisole for Catalytic Enantioselective Domino Michael Addition/Cyclization Reactions in Batch and Flow. ACS Catalysis, 6(1), 348-356. doi:10.1021/acscatal.5b02121 es_ES
dc.description.references Nicolaou, K. C., Rhoades, D., & Kumar, S. M. (2018). Total Syntheses of Thailanstatins A–C, Spliceostatin D, and Analogues Thereof. Stereodivergent Synthesis of Tetrasubstituted Dihydro- and Tetrahydropyrans and Design, Synthesis, Biological Evaluation, and Discovery of Potent Antitumor Agents. Journal of the American Chemical Society, 140(26), 8303-8320. doi:10.1021/jacs.8b04634 es_ES
dc.description.references Ye, R., Faucher, F. F., & Somorjai, G. A. (2018). Supported iron catalysts for Michael addition reactions. Molecular Catalysis, 447, 65-71. doi:10.1016/j.mcat.2017.12.029 es_ES
dc.description.references Morita, N., Yasuda, A., Shibata, M., Ban, S., Hashimoto, Y., Okamoto, I., & Tamura, O. (2015). Gold(I)/(III)-Catalyzed Synthesis of Cyclic Ethers; Valency-Controlled Cyclization Modes. Organic Letters, 17(11), 2668-2671. doi:10.1021/acs.orglett.5b01046 es_ES
dc.description.references Li, Z., Song, L., Van Meervelt, L., Tian, G., & Van der Eycken, E. V. (2018). Cationic Gold(I)-Catalyzed Cascade Bicyclizations for Divergent Synthesis of (Spiro)polyheterocycles. ACS Catalysis, 8(7), 6388-6393. doi:10.1021/acscatal.8b01789 es_ES
dc.description.references Pagadala, R., Maddila, S., Moodley, V., van Zyl, W. E., & Jonnalagadda, S. B. (2014). An efficient method for the multicomponent synthesis of multisubstituted pyridines, a rapid procedure using Au/MgO as the catalyst. Tetrahedron Letters, 55(29), 4006-4010. doi:10.1016/j.tetlet.2014.05.089 es_ES
dc.description.references Oliver-Meseguer, J., Boronat, M., Vidal-Moya, A., Concepción, P., Rivero-Crespo, M. Á., Leyva-Pérez, A., & Corma, A. (2018). Generation and Reactivity of Electron-Rich Carbenes on the Surface of Catalytic Gold Nanoparticles. Journal of the American Chemical Society, 140(9), 3215-3218. doi:10.1021/jacs.7b13696 es_ES
dc.description.references Leyva-Pérez, A., Oliver-Meseguer, J., Cabrero-Antonino, J. R., Rubio-Marqués, P., Serna, P., Al-Resayes, S. I., & Corma, A. (2013). Reactivity of Electron-Deficient Alkynes on Gold Nanoparticles. ACS Catalysis, 3(8), 1865-1873. doi:10.1021/cs400362c es_ES
dc.description.references Megia-Fernandez, A., Ortega-Muñoz, M., Lopez-Jaramillo, J., Hernandez-Mateo, F., & Santoyo-Gonzalez, F. (2010). Non-Magnetic and Magnetic Supported Copper(I) Chelating Adsorbents as Efficient Heterogeneous Catalysts and Copper Scavengers for Click Chemistry. Advanced Synthesis & Catalysis, 352(18), 3306-3320. doi:10.1002/adsc.201000530 es_ES
dc.description.references Kawabata, T., Kato, M., Mizugaki, T., Ebitani, K., & Kaneda, K. (2005). Monomeric Metal Aqua Complexes in the Interlayer Space of Montmorillonites as Strong Lewis Acid Catalysts for Heterogeneous Carbon-Carbon Bond-Forming Reactions. Chemistry - A European Journal, 11(1), 288-297. doi:10.1002/chem.200400672 es_ES
dc.description.references Palomo, C., Oiarbide, M., & Laso, A. (2005). Enantioselective Henry Reactions under Dual Lewis Acid/Amine Catalysis Using Chiral Amino Alcohol Ligands. Angewandte Chemie International Edition, 44(25), 3881-3884. doi:10.1002/anie.200463075 es_ES
dc.description.references Palomo, C., Oiarbide, M., & Laso, A. (2005). Enantioselective Henry Reactions under Dual Lewis Acid/Amine Catalysis Using Chiral Amino Alcohol Ligands. Angewandte Chemie, 117(25), 3949-3952. doi:10.1002/ange.200463075 es_ES
dc.description.references Ganesan, S., Ganesan, A., & Kothandapani, J. (2014). Hyperbranched Polyamines: Tunable Catalysts for the Henry Reaction. Synlett, 25(13), 1847-1850. doi:10.1055/s-0034-1378534 es_ES
dc.description.references Li, H., Wang, B., & Deng, L. (2006). Enantioselective Nitroaldol Reaction of α-Ketoesters Catalyzed by Cinchona Alkaloids. Journal of the American Chemical Society, 128(3), 732-733. doi:10.1021/ja057237l es_ES
dc.description.references Gurbanov, A. V., Hazra, S., Maharramov, A. M., Zubkov, F. I., Guseinov, F. I., & Pombeiro, A. J. L. (2018). The Henry reaction catalyzed by NiII and CuII complexes bearing arylhydrazones of acetoacetanilide. Journal of Organometallic Chemistry, 869, 48-53. doi:10.1016/j.jorganchem.2018.05.025 es_ES
dc.description.references Sels, B. F., De Vos, D. E., & Jacobs, P. A. (2001). Hydrotalcite-like anionic clays in catalytic organic reactions. Catalysis Reviews, 43(4), 443-488. doi:10.1081/cr-120001809 es_ES
dc.description.references Choudary, B. M., Kantam, M. L., & Kavita, B. (2001). Synthesis of 2-nitroalkanols by MgAlO-t-Bu hydrotalcite. Journal of Molecular Catalysis A: Chemical, 169(1-2), 193-197. doi:10.1016/s1381-1169(00)00558-6 es_ES
dc.description.references Cwik, A., Fuchs, A., Hell, Z., & Clacens, J.-M. (2005). Nitroaldol-reaction of aldehydes in the presence of non-activated Mg:Al 2:1 hydrotalcite; a possible new mechanism for the formation of 2-aryl-1,3-dinitropropanes. Tetrahedron, 61(16), 4015-4021. doi:10.1016/j.tet.2005.02.055 es_ES
dc.description.references Evans, D. A., Seidel, D., Rueping, M., Lam, H. W., Shaw, J. T., & Downey, C. W. (2003). A New Copper Acetate-Bis(oxazoline)-Catalyzed, Enantioselective Henry Reaction. Journal of the American Chemical Society, 125(42), 12692-12693. doi:10.1021/ja0373871 es_ES
dc.description.references Risgaard, T., Gothelf, K. V., & Jørgensen, K. A. (2003). Catalytic asymmetric Henry reactions of silyl nitronates with aldehydes. Org. Biomol. Chem., 1(1), 153-156. doi:10.1039/b208859m es_ES
dc.description.references Arai, T., Watanabe, M., & Yanagisawa, A. (2007). Practical Asymmetric Henry Reaction Catalyzed by a Chiral Diamine-Cu(OAc)2Complex. Organic Letters, 9(18), 3595-3597. doi:10.1021/ol7014362 es_ES
dc.description.references Jin, W., Li, X., & Wan, B. (2011). A Highly Diastereo- and Enantioselective Copper(I)-Catalyzed Henry Reaction Using a Bis(sulfonamide)−Diamine Ligand. The Journal of Organic Chemistry, 76(2), 484-491. doi:10.1021/jo101932a es_ES
dc.description.references White, J. D., & Shaw, S. (2012). A New Catalyst for the Asymmetric Henry Reaction: Synthesis of β-Nitroethanols in High Enantiomeric Excess. Organic Letters, 14(24), 6270-6273. doi:10.1021/ol3030023 es_ES
dc.description.references Jones, M. D., Cooper, C. J., Mahon, M. F., Raithby, P. R., Apperley, D., Wolowska, J., & Collison, D. (2010). Cu(II) homogeneous and heterogeneous catalysts for the asymmetric Henry reaction. Journal of Molecular Catalysis A: Chemical, 325(1-2), 8-14. doi:10.1016/j.molcata.2010.03.013 es_ES
dc.description.references Gupta, A. K., De, D., & Bharadwaj, P. K. (2017). A NbO type Cu(ii) metal–organic framework showing efficient catalytic activity in the Friedländer and Henry reactions. Dalton Transactions, 46(24), 7782-7790. doi:10.1039/c7dt01595j es_ES
dc.description.references Gupta, M., De, D., Pal, S., Pal, T. K., & Tomar, K. (2017). A porous two-dimensional Zn(ii)-coordination polymer exhibiting SC–SC transmetalation with Cu(ii): efficient heterogeneous catalysis for the Henry reaction and detection of nitro explosives. Dalton Transactions, 46(23), 7619-7627. doi:10.1039/c7dt01074e es_ES
dc.description.references Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217-224. doi:10.1038/nnano.2009.58 es_ES
dc.description.references Bottari, G., Herranz, M. Á., Wibmer, L., Volland, M., Rodríguez-Pérez, L., Guldi, D. M., … Torres, T. (2017). Chemical functionalization and characterization of graphene-based materials. Chemical Society Reviews, 46(15), 4464-4500. doi:10.1039/c7cs00229g es_ES
dc.description.references Bostwick, A., Speck, F., Seyller, T., Horn, K., Polini, M., Asgari, R., … Rotenberg, E. (2010). Observation of Plasmarons in Quasi-Freestanding Doped Graphene. Science, 328(5981), 999-1002. doi:10.1126/science.1186489 es_ES
dc.description.references Esrafili, M. D., Nematollahi, P., & Nurazar, R. (2016). Pd-embedded graphene: An efficient and highly active catalyst for oxidation of CO. Superlattices and Microstructures, 92, 60-67. doi:10.1016/j.spmi.2016.02.006 es_ES
dc.description.references Woo, H., Kim, J. W., Kim, M., Park, S., & Park, K. H. (2015). Au nanoparticles supported on magnetically separable Fe2O3–graphene oxide hybrid nanosheets for the catalytic reduction of 4-nitrophenol. RSC Advances, 5(10), 7554-7558. doi:10.1039/c4ra13989e es_ES
dc.description.references Pourjavadi, A., Doroudian, M., Abedin-Moghanaki, A., & Bennett, C. (2017). Magnetic GO-PANI decorated with Au NPs: A highly efficient and reusable catalyst for reduction of dyes and nitro aromatic compounds. Applied Organometallic Chemistry, 31(12), e3881. doi:10.1002/aoc.3881 es_ES
dc.description.references Sarvestani, M., & Azadi, R. (2016). Palladium nanoparticles deposited on a graphene-benzimidazole support as an efficient and recyclable catalyst for aqueous-phase Suzuki-Miyaura coupling reaction. Applied Organometallic Chemistry, 31(8), e3667. doi:10.1002/aoc.3667 es_ES
dc.description.references Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908 es_ES
dc.description.references Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie, 128(2), 617-622. doi:10.1002/ange.201508908 es_ES
dc.description.references Mahdavi, H., & Rahmani, O. (2016). Polyacrylamide-g-Reduced Graphene Oxide Supported Pd Nanoparticles as a Highly Efficient Catalyst for Suzuki–Miyaura Reactions in Water. Catalysis Letters, 146(11), 2292-2305. doi:10.1007/s10562-016-1851-1 es_ES
dc.description.references Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561 es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g es_ES
dc.description.references Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068 es_ES
dc.description.references Boruwa, J., Gogoi, N., Saikia, P. P., & Barua, N. C. (2006). Catalytic asymmetric Henry reaction. Tetrahedron: Asymmetry, 17(24), 3315-3326. doi:10.1016/j.tetasy.2006.12.005 es_ES
dc.description.references Palomo, C., Oiarbide, M., & Laso, A. (2007). Recent Advances in the Catalytic Asymmetric Nitroaldol (Henry) Reaction. European Journal of Organic Chemistry, 2007(16), 2561-2574. doi:10.1002/ejoc.200700021 es_ES
dc.description.references Akutu, K., Kabashima, H., Seki, T., & Hattori, H. (2003). Nitroaldol reaction over solid base catalysts. Applied Catalysis A: General, 247(1), 65-74. doi:10.1016/s0926-860x(03)00124-8 es_ES
dc.description.references Ballini, R., Bosica, G., Fiorini, D., Palmieri, A., & Petrini, M. (2005). Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes:  Recent Results. Chemical Reviews, 105(3), 933-972. doi:10.1021/cr040602r es_ES
dc.description.references Choudary, B. M., Rajasekhar, C. V., Gopi Krishna, G., & Rajender Reddy, K. (2007). L‐Proline‐Catalyzed Michael Addition of Aldehydes and Unmodified Ketones to Nitro Olefins Accelerated by Et3N. Synthetic Communications, 37(1), 91-98. doi:10.1080/00397910600978218 es_ES
dc.description.references Ding, R., Katebzadeh, K., Roman, L., Bergquist, K.-E., & Lindström, U. M. (2006). Expanding the Scope of Lewis Acid Catalysis in Water:  Remarkable Ligand Acceleration of Aqueous Ytterbium Triflate Catalyzed Michael Addition Reactions. The Journal of Organic Chemistry, 71(1), 352-355. doi:10.1021/jo051540n es_ES
dc.description.references Primo, A., Neatu, F., Florea, M., Parvulescu, V., & Garcia, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 5(1). doi:10.1038/ncomms6291 es_ES
dc.description.references Milner, S. E., Moody, T. S., & Maguire, A. R. (2012). Biocatalytic Approaches to the Henry (Nitroaldol) Reaction. European Journal of Organic Chemistry, 2012(16), 3059-3067. doi:10.1002/ejoc.201101840 es_ES
dc.description.references Ballini, R., & Palmieri, A. (2006). Synthetic Applications of Nitroalkanes Promoted by Solid Catalysis: Recent Results. Current Organic Chemistry, 10(17), 2145-2169. doi:10.2174/138527206778742632 es_ES
dc.description.references Luzzio, F. A. (2001). The Henry reaction: recent examples. Tetrahedron, 57(6), 915-945. doi:10.1016/s0040-4020(00)00965-0 es_ES
dc.description.references 2011 http://www.skb.se/upload/publications/pdf/TR-11-08 es_ES
dc.description.references Glorius, M., Markovits, M. A. C., & Breitkopf, C. (2018). Design of Specific Acid-Base-Properties in CeO2-ZrO2-Mixed Oxides via Templating and Au Modification. Catalysts, 8(9), 358. doi:10.3390/catal8090358 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem