- -

Bimetallic Oriented (Au/Cu2O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bimetallic Oriented (Au/Cu2O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions

Mostrar el registro completo del ítem

Simion, A.; Candu, N.; Coman, SM.; Primo Arnau, AM.; Esteve-Adell, I.; Michelet, V.; Parvulescu, VI.... (2018). Bimetallic Oriented (Au/Cu2O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry. 2018(44):6185-6190. https://doi.org/10.1002/ejoc.201801443

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147914

Ficheros en el ítem

Metadatos del ítem

Título: Bimetallic Oriented (Au/Cu2O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions
Autor: Simion, Andrada Candu, Natalia Coman, Simona M. Primo Arnau, Ana Maria Esteve-Adell, Iván Michelet, Veronique Parvulescu, Vasile I. García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto de Tecnología Eléctrica - Institut de Tecnologia Elèctrica
Fecha difusión:
Resumen:
[EN] Michael and Henry addition reactions have been investigated using mono (Au and Cu2O) and bimetallic nanoplatelets (Au/Cu2O) grafted onto few-layers graphene (fl-G) films as heterogeneous catalysts by comparison with ...[+]
Palabras clave: Graphene , Copper , Gold , Heterogeneous catalysts , Nanoplatelets
Derechos de uso: Reserva de todos los derechos
Fuente:
European Journal of Organic Chemistry. (issn: 1434-193X )
DOI: 10.1002/ejoc.201801443
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/ejoc.201801443
Código del Proyecto:
info:eu-repo/grantAgreement/UEFISCDI//PN-III-P4-ID-PCE-2016-0146 121%2F2017/
info:eu-repo/grantAgreement/COST//CA15106/EU/C-H Activation in Organic Synthesis (CHAOS)/
info:eu-repo/grantAgreement/UEFISCDI//PN-III-CEI-BIM-PM 80BM%2F2017/
Descripción: "This is the peer reviewed version of the following article: Simion, Andrada, Natalia Candu, Simona M. Coman, Ana Primo, Ivan Esteve-Adell, Véronique Michelet, Vasile I. Parvulescu, and Hermenegildo Garcia. 2018. Bimetallic Oriented (Au /Cu2 O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2 O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry 2018 (44). Wiley: 6185 90. doi:10.1002/ejoc.201801443, which has been published in final form at https://doi.org/10.1002/ejoc.201801443. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
This work was supported by the Ministere de l' Education, de la Recherche et des Affaires Etrangeres (Brancusi Program) of France (PN-III-CEI-BIM-PM, nr. 80BM/2017), UEFISCDI (PN-III-P4-ID-PCE-2016-0146, nr. 121/2017) and ...[+]
Tipo: Artículo

References

Michael, A. (1887). Ueber die Addition von Natriumacetessig- und Natriummalonsäureäthern zu den Aethern ungesättigter Säuren. Journal für Praktische Chemie, 35(1), 349-356. doi:10.1002/prac.18870350136

Michael, A. (1894). Ueber die Addition von Natriumacetessig- und Natriummalonsäureäther zu den Aethern ungesättigter Säuren. Journal für Praktische Chemie, 49(1), 20-25. doi:10.1002/prac.18940490103

Tokoroyama, T. (2010). Discovery of the Michael Reaction. European Journal of Organic Chemistry, 2010(10), 2009-2016. doi:10.1002/ejoc.200901130 [+]
Michael, A. (1887). Ueber die Addition von Natriumacetessig- und Natriummalonsäureäthern zu den Aethern ungesättigter Säuren. Journal für Praktische Chemie, 35(1), 349-356. doi:10.1002/prac.18870350136

Michael, A. (1894). Ueber die Addition von Natriumacetessig- und Natriummalonsäureäther zu den Aethern ungesättigter Säuren. Journal für Praktische Chemie, 49(1), 20-25. doi:10.1002/prac.18940490103

Tokoroyama, T. (2010). Discovery of the Michael Reaction. European Journal of Organic Chemistry, 2010(10), 2009-2016. doi:10.1002/ejoc.200901130

Huebner, C. F., Sullivan, W. R., Stahmann, M. A., & Link, K. P. (1943). Studies on 4-Hydroxycoumarin. III. Dehydration of the Aldehyde Condensation Products1. Journal of the American Chemical Society, 65(12), 2292-2296. doi:10.1021/ja01252a009

Mukaiyama, T. (1977). Titanium Tetrachloride in Organic Synthesis[New synthetic methods(21)]. Angewandte Chemie International Edition in English, 16(12), 817-826. doi:10.1002/anie.197708171

Mukaiyama, T. (1977). Titantetrachlorid in der organischen Synthese. Angewandte Chemie, 89(12), 858-866. doi:10.1002/ange.19770891205

Pansare, S. V., & Pandya, K. (2006). Simple Diamine- and Triamine-Protonic Acid Catalysts for the Enantioselective Michael Addition of Cyclic Ketones to Nitroalkenes. Journal of the American Chemical Society, 128(30), 9624-9625. doi:10.1021/ja062701n

Ikawa, M., Stahmann, M. A., & Link, K. P. (1944). Studies on 4-Hydroxycoumarins. V. The Condensation of α,β-Unsaturated Ketones with 4-Hydroxycoumarin1. Journal of the American Chemical Society, 66(6), 902-906. doi:10.1021/ja01234a019

Iwamura, M., Gotoh, Y., Hashimoto, T., & Sakurai, R. (2005). Michael addition reactions of acetoacetates and malonates with acrylates in water under strongly alkaline conditions. Tetrahedron Letters, 46(37), 6275-6277. doi:10.1016/j.tetlet.2005.07.045

Xu, X., Hu, W.-H., & Doyle, M. P. (2011). Highly Enantioselective Catalytic Synthesis of Functionalized Chiral Diazoacetoacetates. Angewandte Chemie International Edition, 50(28), 6392-6395. doi:10.1002/anie.201102405

Xu, X., Hu, W.-H., & Doyle, M. P. (2011). Highly Enantioselective Catalytic Synthesis of Functionalized Chiral Diazoacetoacetates. Angewandte Chemie, 123(28), 6516-6519. doi:10.1002/ange.201102405

Martinez, R., Simon, M.-O., Chevalier, R., Pautigny, C., Genet, J.-P., & Darses, S. (2009). C−C Bond Formation via C−H Bond Activation Using an in Situ-Generated Ruthenium Catalyst. Journal of the American Chemical Society, 131(22), 7887-7895. doi:10.1021/ja9017489

Halland, N., Hansen, T., & Jørgensen, K. A. (2003). Organocatalytic Asymmetric Michael Reaction of Cyclic 1,3-Dicarbonyl Compounds andα,β-Unsaturated Ketones—A Highly Atom-Economic Catalytic One-Step Formation of Optically Active Warfarin Anticoagulant. Angewandte Chemie International Edition, 42(40), 4955-4957. doi:10.1002/anie.200352136

Halland, N., Hansen, T., & Jørgensen, K. A. (2003). Organocatalytic Asymmetric Michael Reaction of Cyclic 1,3-Dicarbonyl Compounds andα,β-Unsaturated Ketones—A Highly Atom-Economic Catalytic One-Step Formation of Optically Active Warfarin Anticoagulant. Angewandte Chemie, 115(40), 5105-5107. doi:10.1002/ange.200352136

Izquierdo, J., & Pericàs, M. A. (2015). A Recyclable, Immobilized Analogue of Benzotetramisole for Catalytic Enantioselective Domino Michael Addition/Cyclization Reactions in Batch and Flow. ACS Catalysis, 6(1), 348-356. doi:10.1021/acscatal.5b02121

Nicolaou, K. C., Rhoades, D., & Kumar, S. M. (2018). Total Syntheses of Thailanstatins A–C, Spliceostatin D, and Analogues Thereof. Stereodivergent Synthesis of Tetrasubstituted Dihydro- and Tetrahydropyrans and Design, Synthesis, Biological Evaluation, and Discovery of Potent Antitumor Agents. Journal of the American Chemical Society, 140(26), 8303-8320. doi:10.1021/jacs.8b04634

Ye, R., Faucher, F. F., & Somorjai, G. A. (2018). Supported iron catalysts for Michael addition reactions. Molecular Catalysis, 447, 65-71. doi:10.1016/j.mcat.2017.12.029

Morita, N., Yasuda, A., Shibata, M., Ban, S., Hashimoto, Y., Okamoto, I., & Tamura, O. (2015). Gold(I)/(III)-Catalyzed Synthesis of Cyclic Ethers; Valency-Controlled Cyclization Modes. Organic Letters, 17(11), 2668-2671. doi:10.1021/acs.orglett.5b01046

Li, Z., Song, L., Van Meervelt, L., Tian, G., & Van der Eycken, E. V. (2018). Cationic Gold(I)-Catalyzed Cascade Bicyclizations for Divergent Synthesis of (Spiro)polyheterocycles. ACS Catalysis, 8(7), 6388-6393. doi:10.1021/acscatal.8b01789

Pagadala, R., Maddila, S., Moodley, V., van Zyl, W. E., & Jonnalagadda, S. B. (2014). An efficient method for the multicomponent synthesis of multisubstituted pyridines, a rapid procedure using Au/MgO as the catalyst. Tetrahedron Letters, 55(29), 4006-4010. doi:10.1016/j.tetlet.2014.05.089

Oliver-Meseguer, J., Boronat, M., Vidal-Moya, A., Concepción, P., Rivero-Crespo, M. Á., Leyva-Pérez, A., & Corma, A. (2018). Generation and Reactivity of Electron-Rich Carbenes on the Surface of Catalytic Gold Nanoparticles. Journal of the American Chemical Society, 140(9), 3215-3218. doi:10.1021/jacs.7b13696

Leyva-Pérez, A., Oliver-Meseguer, J., Cabrero-Antonino, J. R., Rubio-Marqués, P., Serna, P., Al-Resayes, S. I., & Corma, A. (2013). Reactivity of Electron-Deficient Alkynes on Gold Nanoparticles. ACS Catalysis, 3(8), 1865-1873. doi:10.1021/cs400362c

Megia-Fernandez, A., Ortega-Muñoz, M., Lopez-Jaramillo, J., Hernandez-Mateo, F., & Santoyo-Gonzalez, F. (2010). Non-Magnetic and Magnetic Supported Copper(I) Chelating Adsorbents as Efficient Heterogeneous Catalysts and Copper Scavengers for Click Chemistry. Advanced Synthesis & Catalysis, 352(18), 3306-3320. doi:10.1002/adsc.201000530

Kawabata, T., Kato, M., Mizugaki, T., Ebitani, K., & Kaneda, K. (2005). Monomeric Metal Aqua Complexes in the Interlayer Space of Montmorillonites as Strong Lewis Acid Catalysts for Heterogeneous Carbon-Carbon Bond-Forming Reactions. Chemistry - A European Journal, 11(1), 288-297. doi:10.1002/chem.200400672

Palomo, C., Oiarbide, M., & Laso, A. (2005). Enantioselective Henry Reactions under Dual Lewis Acid/Amine Catalysis Using Chiral Amino Alcohol Ligands. Angewandte Chemie International Edition, 44(25), 3881-3884. doi:10.1002/anie.200463075

Palomo, C., Oiarbide, M., & Laso, A. (2005). Enantioselective Henry Reactions under Dual Lewis Acid/Amine Catalysis Using Chiral Amino Alcohol Ligands. Angewandte Chemie, 117(25), 3949-3952. doi:10.1002/ange.200463075

Ganesan, S., Ganesan, A., & Kothandapani, J. (2014). Hyperbranched Polyamines: Tunable Catalysts for the Henry Reaction. Synlett, 25(13), 1847-1850. doi:10.1055/s-0034-1378534

Li, H., Wang, B., & Deng, L. (2006). Enantioselective Nitroaldol Reaction of α-Ketoesters Catalyzed by Cinchona Alkaloids. Journal of the American Chemical Society, 128(3), 732-733. doi:10.1021/ja057237l

Gurbanov, A. V., Hazra, S., Maharramov, A. M., Zubkov, F. I., Guseinov, F. I., & Pombeiro, A. J. L. (2018). The Henry reaction catalyzed by NiII and CuII complexes bearing arylhydrazones of acetoacetanilide. Journal of Organometallic Chemistry, 869, 48-53. doi:10.1016/j.jorganchem.2018.05.025

Sels, B. F., De Vos, D. E., & Jacobs, P. A. (2001). Hydrotalcite-like anionic clays in catalytic organic reactions. Catalysis Reviews, 43(4), 443-488. doi:10.1081/cr-120001809

Choudary, B. M., Kantam, M. L., & Kavita, B. (2001). Synthesis of 2-nitroalkanols by MgAlO-t-Bu hydrotalcite. Journal of Molecular Catalysis A: Chemical, 169(1-2), 193-197. doi:10.1016/s1381-1169(00)00558-6

Cwik, A., Fuchs, A., Hell, Z., & Clacens, J.-M. (2005). Nitroaldol-reaction of aldehydes in the presence of non-activated Mg:Al 2:1 hydrotalcite; a possible new mechanism for the formation of 2-aryl-1,3-dinitropropanes. Tetrahedron, 61(16), 4015-4021. doi:10.1016/j.tet.2005.02.055

Evans, D. A., Seidel, D., Rueping, M., Lam, H. W., Shaw, J. T., & Downey, C. W. (2003). A New Copper Acetate-Bis(oxazoline)-Catalyzed, Enantioselective Henry Reaction. Journal of the American Chemical Society, 125(42), 12692-12693. doi:10.1021/ja0373871

Risgaard, T., Gothelf, K. V., & Jørgensen, K. A. (2003). Catalytic asymmetric Henry reactions of silyl nitronates with aldehydes. Org. Biomol. Chem., 1(1), 153-156. doi:10.1039/b208859m

Arai, T., Watanabe, M., & Yanagisawa, A. (2007). Practical Asymmetric Henry Reaction Catalyzed by a Chiral Diamine-Cu(OAc)2Complex. Organic Letters, 9(18), 3595-3597. doi:10.1021/ol7014362

Jin, W., Li, X., & Wan, B. (2011). A Highly Diastereo- and Enantioselective Copper(I)-Catalyzed Henry Reaction Using a Bis(sulfonamide)−Diamine Ligand. The Journal of Organic Chemistry, 76(2), 484-491. doi:10.1021/jo101932a

White, J. D., & Shaw, S. (2012). A New Catalyst for the Asymmetric Henry Reaction: Synthesis of β-Nitroethanols in High Enantiomeric Excess. Organic Letters, 14(24), 6270-6273. doi:10.1021/ol3030023

Jones, M. D., Cooper, C. J., Mahon, M. F., Raithby, P. R., Apperley, D., Wolowska, J., & Collison, D. (2010). Cu(II) homogeneous and heterogeneous catalysts for the asymmetric Henry reaction. Journal of Molecular Catalysis A: Chemical, 325(1-2), 8-14. doi:10.1016/j.molcata.2010.03.013

Gupta, A. K., De, D., & Bharadwaj, P. K. (2017). A NbO type Cu(ii) metal–organic framework showing efficient catalytic activity in the Friedländer and Henry reactions. Dalton Transactions, 46(24), 7782-7790. doi:10.1039/c7dt01595j

Gupta, M., De, D., Pal, S., Pal, T. K., & Tomar, K. (2017). A porous two-dimensional Zn(ii)-coordination polymer exhibiting SC–SC transmetalation with Cu(ii): efficient heterogeneous catalysis for the Henry reaction and detection of nitro explosives. Dalton Transactions, 46(23), 7619-7627. doi:10.1039/c7dt01074e

Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217-224. doi:10.1038/nnano.2009.58

Bottari, G., Herranz, M. Á., Wibmer, L., Volland, M., Rodríguez-Pérez, L., Guldi, D. M., … Torres, T. (2017). Chemical functionalization and characterization of graphene-based materials. Chemical Society Reviews, 46(15), 4464-4500. doi:10.1039/c7cs00229g

Bostwick, A., Speck, F., Seyller, T., Horn, K., Polini, M., Asgari, R., … Rotenberg, E. (2010). Observation of Plasmarons in Quasi-Freestanding Doped Graphene. Science, 328(5981), 999-1002. doi:10.1126/science.1186489

Esrafili, M. D., Nematollahi, P., & Nurazar, R. (2016). Pd-embedded graphene: An efficient and highly active catalyst for oxidation of CO. Superlattices and Microstructures, 92, 60-67. doi:10.1016/j.spmi.2016.02.006

Woo, H., Kim, J. W., Kim, M., Park, S., & Park, K. H. (2015). Au nanoparticles supported on magnetically separable Fe2O3–graphene oxide hybrid nanosheets for the catalytic reduction of 4-nitrophenol. RSC Advances, 5(10), 7554-7558. doi:10.1039/c4ra13989e

Pourjavadi, A., Doroudian, M., Abedin-Moghanaki, A., & Bennett, C. (2017). Magnetic GO-PANI decorated with Au NPs: A highly efficient and reusable catalyst for reduction of dyes and nitro aromatic compounds. Applied Organometallic Chemistry, 31(12), e3881. doi:10.1002/aoc.3881

Sarvestani, M., & Azadi, R. (2016). Palladium nanoparticles deposited on a graphene-benzimidazole support as an efficient and recyclable catalyst for aqueous-phase Suzuki-Miyaura coupling reaction. Applied Organometallic Chemistry, 31(8), e3667. doi:10.1002/aoc.3667

Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908

Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie, 128(2), 617-622. doi:10.1002/ange.201508908

Mahdavi, H., & Rahmani, O. (2016). Polyacrylamide-g-Reduced Graphene Oxide Supported Pd Nanoparticles as a Highly Efficient Catalyst for Suzuki–Miyaura Reactions in Water. Catalysis Letters, 146(11), 2292-2305. doi:10.1007/s10562-016-1851-1

Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561

Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g

Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068

Boruwa, J., Gogoi, N., Saikia, P. P., & Barua, N. C. (2006). Catalytic asymmetric Henry reaction. Tetrahedron: Asymmetry, 17(24), 3315-3326. doi:10.1016/j.tetasy.2006.12.005

Palomo, C., Oiarbide, M., & Laso, A. (2007). Recent Advances in the Catalytic Asymmetric Nitroaldol (Henry) Reaction. European Journal of Organic Chemistry, 2007(16), 2561-2574. doi:10.1002/ejoc.200700021

Akutu, K., Kabashima, H., Seki, T., & Hattori, H. (2003). Nitroaldol reaction over solid base catalysts. Applied Catalysis A: General, 247(1), 65-74. doi:10.1016/s0926-860x(03)00124-8

Ballini, R., Bosica, G., Fiorini, D., Palmieri, A., & Petrini, M. (2005). Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes:  Recent Results. Chemical Reviews, 105(3), 933-972. doi:10.1021/cr040602r

Choudary, B. M., Rajasekhar, C. V., Gopi Krishna, G., & Rajender Reddy, K. (2007). L‐Proline‐Catalyzed Michael Addition of Aldehydes and Unmodified Ketones to Nitro Olefins Accelerated by Et3N. Synthetic Communications, 37(1), 91-98. doi:10.1080/00397910600978218

Ding, R., Katebzadeh, K., Roman, L., Bergquist, K.-E., & Lindström, U. M. (2006). Expanding the Scope of Lewis Acid Catalysis in Water:  Remarkable Ligand Acceleration of Aqueous Ytterbium Triflate Catalyzed Michael Addition Reactions. The Journal of Organic Chemistry, 71(1), 352-355. doi:10.1021/jo051540n

Primo, A., Neatu, F., Florea, M., Parvulescu, V., & Garcia, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 5(1). doi:10.1038/ncomms6291

Milner, S. E., Moody, T. S., & Maguire, A. R. (2012). Biocatalytic Approaches to the Henry (Nitroaldol) Reaction. European Journal of Organic Chemistry, 2012(16), 3059-3067. doi:10.1002/ejoc.201101840

Ballini, R., & Palmieri, A. (2006). Synthetic Applications of Nitroalkanes Promoted by Solid Catalysis: Recent Results. Current Organic Chemistry, 10(17), 2145-2169. doi:10.2174/138527206778742632

Luzzio, F. A. (2001). The Henry reaction: recent examples. Tetrahedron, 57(6), 915-945. doi:10.1016/s0040-4020(00)00965-0

2011 http://www.skb.se/upload/publications/pdf/TR-11-08

Glorius, M., Markovits, M. A. C., & Breitkopf, C. (2018). Design of Specific Acid-Base-Properties in CeO2-ZrO2-Mixed Oxides via Templating and Au Modification. Catalysts, 8(9), 358. doi:10.3390/catal8090358

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem