- -

Controller-observer design and dynamic parameter identification for model-based control of an electromechanical lower-limb rehabilitation system

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Controller-observer design and dynamic parameter identification for model-based control of an electromechanical lower-limb rehabilitation system

Mostrar el registro completo del ítem

Valera Fernández, Á.; Díaz-Rodríguez, M.; Vallés Miquel, M.; Oliver, E.; Mata Amela, V.; Page Del Pozo, AF. (2017). Controller-observer design and dynamic parameter identification for model-based control of an electromechanical lower-limb rehabilitation system. International Journal of Control. 90(4):702-714. https://doi.org/10.1080/00207179.2016.1215529

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148012

Ficheros en el ítem

Metadatos del ítem

Título: Controller-observer design and dynamic parameter identification for model-based control of an electromechanical lower-limb rehabilitation system
Autor: Valera Fernández, Ángel Díaz-Rodríguez, Miguel Vallés Miquel, Marina Oliver, E. Mata Amela, Vicente Page Del Pozo, Alvaro Felipe
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] Rehabilitation is a hazardous task for a mechanical system, since the device has to interact with the human extremities without the hands-on experience the physiotherapist acquires over time. A gap needs to be filled ...[+]
Palabras clave: Lower-limb rehabilitation , Model-based control , Parameter identification , Controller-observer design , Parallel kinematic mechanism
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Control. (issn: 0020-7179 )
DOI: 10.1080/00207179.2016.1215529
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/00207179.2016.1215529
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2013-44227-R/ES/METODOLOGIA DE DISEÑO DE SISTEMAS BIOMECATRONICOS. APLICACION AL DESARROLLO DE UN ROBOT PARALELO HIBRIDO PARA DIAGNOSTICO Y REHABILITACION/
Agradecimientos:
This work was partially financed by the Plan Nacional de I+D, Comision Interministerial de Ciencia y Tecnologia (FEDERCICYT) under the project DPI2013-44227-R and by the Instituto U. de Automatica e Informatica Industrial ...[+]
Tipo: Artículo

References

Åström, K. J., & Murray, R. M. (2010). Feedback Systems. doi:10.2307/j.ctvcm4gdk

Atkeson, C. G., An, C. H., & Hollerbach, J. M. (1986). Estimation of Inertial Parameters of Manipulator Loads and Links. The International Journal of Robotics Research, 5(3), 101-119. doi:10.1177/027836498600500306

Chia Bejarano, N., Maggioni, S., De Rijcke, L., Cifuentes, C. A., & Reinkensmeyer, D. J. (2015). Robot-Assisted Rehabilitation Therapy: Recovery Mechanisms and Their Implications for Machine Design. Emerging Therapies in Neurorehabilitation II, 197-223. doi:10.1007/978-3-319-24901-8_8 [+]
Åström, K. J., & Murray, R. M. (2010). Feedback Systems. doi:10.2307/j.ctvcm4gdk

Atkeson, C. G., An, C. H., & Hollerbach, J. M. (1986). Estimation of Inertial Parameters of Manipulator Loads and Links. The International Journal of Robotics Research, 5(3), 101-119. doi:10.1177/027836498600500306

Chia Bejarano, N., Maggioni, S., De Rijcke, L., Cifuentes, C. A., & Reinkensmeyer, D. J. (2015). Robot-Assisted Rehabilitation Therapy: Recovery Mechanisms and Their Implications for Machine Design. Emerging Therapies in Neurorehabilitation II, 197-223. doi:10.1007/978-3-319-24901-8_8

Berghuis, H., & Nijmeijer, H. (1993). A passivity approach to controller-observer design for robots. IEEE Transactions on Robotics and Automation, 9(6), 740-754. doi:10.1109/70.265918

Briot, S., & Gautier, M. (2013). Global identification of joint drive gains and dynamic parameters of parallel robots. Multibody System Dynamics, 33(1), 3-26. doi:10.1007/s11044-013-9403-6

Canudas de Wit, C., & Fixot, N. (1991). Robot control via robust estimated state feedback. IEEE Transactions on Automatic Control, 36(12), 1497-1501. doi:10.1109/9.106170

Canudas de Wit, C., & Slotine, J.-J. E. (1991). Sliding observers for robot manipulators. Automatica, 27(5), 859-864. doi:10.1016/0005-1098(91)90041-y

Cao, J., Xie, S. Q., Das, R., & Zhu, G. L. (2014). Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects. Medical Engineering & Physics, 36(12), 1555-1566. doi:10.1016/j.medengphy.2014.08.005

Carretero, J. A., Podhorodeski, R. P., Nahon, M. A., & Gosselin, C. M. (1999). Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator. Journal of Mechanical Design, 122(1), 17-24. doi:10.1115/1.533542

Cazalilla, J., Vallés, M., Mata, V., Díaz-Rodríguez, M., & Valera, A. (2014). Adaptive control of a 3-DOF parallel manipulator considering payload handling and relevant parameter models. Robotics and Computer-Integrated Manufacturing, 30(5), 468-477. doi:10.1016/j.rcim.2014.02.003

De Jalon, J.G. & Bayo, E. (1994). Kinematic and dynamic simulation of multibody systems: the real-time challenge. New York: Springer Verlag.

Díaz, I., Gil, J. J., & Sánchez, E. (2011). Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. Journal of Robotics, 2011, 1-11. doi:10.1155/2011/759764

Díaz-Rodríguez, M., Iriarte, X., Mata, V., & Ros, J. (2009). On the Experiment Design for Direct Dynamic Parameter Identification of Parallel Robots. Advanced Robotics, 23(3), 329-348. doi:10.1163/156855308x397550

Díaz-Rodríguez, M., Mata, V., Valera, Á., & Page, Á. (2010). A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters. Mechanism and Machine Theory, 45(9), 1337-1356. doi:10.1016/j.mechmachtheory.2010.04.007

Gautier, M. (1991). Numerical calculation of the base inertial parameters of robots. Journal of Robotic Systems, 8(4), 485-506. doi:10.1002/rob.4620080405

Gautier, M., & Khalil, W. (s. f.). On the identification of the inertial parameters of robots. Proceedings of the 27th IEEE Conference on Decision and Control. doi:10.1109/cdc.1988.194738

Jamwal, P. K., Hussain, S., & Xie, S. Q. (2013). Review on design and control aspects of ankle rehabilitation robots. Disability and Rehabilitation: Assistive Technology, 10(2), 93-101. doi:10.3109/17483107.2013.866986

Janabi-Sharifi, F., Hayward, V., & Chen, C.-S. J. (2000). Discrete-time adaptive windowing for velocity estimation. IEEE Transactions on Control Systems Technology, 8(6), 1003-1009. doi:10.1109/87.880606

Janot, A., Gautier, M., Jubien, A., & Vandanjon, P. O. (2014). Comparison Between the CLOE Method and the DIDIM Method for Robots Identification. IEEE Transactions on Control Systems Technology, 22(5), 1935-1941. doi:10.1109/tcst.2014.2299544

Janot, A., Vandanjon, P.-O., & Gautier, M. (2016). A revised Durbin-Wu-Hausman test for industrial robot identification. Control Engineering Practice, 48, 52-62. doi:10.1016/j.conengprac.2015.12.017

Jiménez-Fabián, R., & Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Medical Engineering & Physics, 34(4), 397-408. doi:10.1016/j.medengphy.2011.11.018

Khalil, W., Vijayalingam, A., Khomutenko, B., Mukhanov, I., Lemoine, P., & Ecorchard, G. (2014). OpenSYMORO: An open-source software package for symbolic modelling of robots. 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. doi:10.1109/aim.2014.6878246

Marchal-Crespo, L., & Reinkensmeyer, D. J. (2009). Review of control strategies for robotic movement training after neurologic injury. Journal of NeuroEngineering and Rehabilitation, 6(1). doi:10.1186/1743-0003-6-20

Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., & Xie, S. (Shane). (2015). Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics, 31, 132-145. doi:10.1016/j.mechatronics.2015.04.005

Page, A., Candelas, P., & Belmar, F. (2006). On the use of local fitting techniques for the analysis of physical dynamic systems. European Journal of Physics, 27(2), 273-279. doi:10.1088/0143-0807/27/2/010

Raibert, M. H., & Craig, J. J. (1981). Hybrid Position/Force Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control, 103(2), 126-133. doi:10.1115/1.3139652

Ramsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis. Springer Series in Statistics. doi:10.1007/b98888

Saglia, J. A., Tsagarakis, N. G., Dai, J. S., & Caldwell, D. G. (2013). Control Strategies for Patient-Assisted Training Using the Ankle Rehabilitation Robot (ARBOT). IEEE/ASME Transactions on Mechatronics, 18(6), 1799-1808. doi:10.1109/tmech.2012.2214228

Vallés, M., Cazalilla, J., Valera, Á., Mata, V., Page, Á., & Díaz-Rodríguez, M. (2015). A 3-PRS parallel manipulator for ankle rehabilitation: towards a low-cost robotic rehabilitation. Robotica, 35(10), 1939-1957. doi:10.1017/s0263574715000120

Vallés, M., Cazalilla, J. I., Valera, Á., Mata, V., & Page, Á. (2013). Implementación basada en el middleware OROCOS de controladores dinámicos pasivos para un robot paralelo. Revista Iberoamericana de Automática e Informática Industrial RIAI, 10(1), 96-103. doi:10.1016/j.riai.2012.11.009

Vallés, M., Díaz-Rodríguez, M., Valera, Á., Mata, V., & Page, Á. (2012). Mechatronic Development and Dynamic Control of a 3-DOF Parallel Manipulator. Mechanics Based Design of Structures and Machines, 40(4), 434-452. doi:10.1080/15397734.2012.687292

Wu, F. X., Zhang, W. J., Li, Q., & Ouyang, P. R. (2002). Integrated Design and PD Control of High-Speed Closed-loop Mechanisms. Journal of Dynamic Systems, Measurement, and Control, 124(4), 522-528. doi:10.1115/1.1513179

Yang, C., Huang, Q., & Han, J. (2012). Decoupling control for spatial six-degree-of-freedom electro-hydraulic parallel robot. Robotics and Computer-Integrated Manufacturing, 28(1), 14-23. doi:10.1016/j.rcim.2011.06.002

Yoon, J., Ryu, J., & Lim, K.-B. (2006). Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems, 22(S1), S15-S33. doi:10.1002/rob.20150

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem