- -

Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Penella-Casañ, Consuelo es_ES
dc.contributor.author Pina, A. es_ES
dc.contributor.author San Bautista Primo, Alberto es_ES
dc.contributor.author López Galarza, Salvador Vicente es_ES
dc.contributor.author Calatayud, A. es_ES
dc.date.accessioned 2020-07-16T03:31:31Z
dc.date.available 2020-07-16T03:31:31Z
dc.date.issued 2017-12-01 es_ES
dc.identifier.issn 0300-3604 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148094
dc.description.abstract [EN] Graft union development in plants has been studied mainly by destructive methods such as histological studies. The aim of this work was to evaluate whether the chlorophyll fluorescence imaging (CFI) technique is sensitive enough to reflect changes at the cellular level in different Solanaceae grafted plants 30 d after grafting, when both grafted partners were well fused and strong enough in all plant combinations. The pepper cultivar 'Adige' was grafted onto different Capsicum spp. accessions typified with different compatibility degrees; eggplant was grafted on Solanum torvum and pepper homografts as compatible unions; pepper was grafted on S. torvum and on tomato as incompatible unions. 'Adige'/'Adige' and 'Adige'/pepper A25 showed a higher maximum quantum efficiency of PSII associated with higher values of actual quantum efficiency of PSII and photochemical quenching as well as with vascular regeneration across the graft interface. Our results highlighted that CFI changes reflected histological observations in grafted Solanaceae plants. es_ES
dc.description.sponsorship This work was financed by INIA (Spain) through Project RTA2013-00022-C02-01 and the European Regional Development Fund (ERDF). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Photosynthetica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Callus es_ES
dc.subject Compatibility es_ES
dc.subject Graft es_ES
dc.subject Pepper es_ES
dc.subject Photochemical quenching es_ES
dc.subject Vascular connections es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11099-017-0690-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2013-00022-C02-01/ES/Obtención de patrones de pimiento y su valoración fisiológica, agronómica y genómica frente a estrés hídrico y salino/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Penella-Casañ, C.; Pina, A.; San Bautista Primo, A.; López Galarza, SV.; Calatayud, A. (2017). Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species. Photosynthetica. 55(4):671-678. https://doi.org/10.1007/s11099-017-0690-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11099-017-0690-7 es_ES
dc.description.upvformatpinicio 671 es_ES
dc.description.upvformatpfin 678 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\341314 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Berger, S., Benediktyová, Z., Matouš, K., Bonfig, K., Mueller, M. J., Nedbal, L., & Roitsch, T. (2006). Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. Journal of Experimental Botany, 58(4), 797-806. doi:10.1093/jxb/erl208 es_ES
dc.description.references Bilger, W., & Björkman, O. (1991). Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta, 184(2), 226-234. doi:10.1007/bf00197951 es_ES
dc.description.references Calatayud, Á., Gorbe, E., Roca, D., & Martínez, P. F. (2008). Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants. Environmental and Experimental Botany, 64(1), 65-74. doi:10.1016/j.envexpbot.2008.02.003 es_ES
dc.description.references Clearwater, M. J., Lowe, R. G., Hofstee, B. J., Barclay, C., Mandemaker, A. J., & Blattmann, P. (2004). Hydraulic conductance and rootstock effects in grafted vines of kiwifruit. Journal of Experimental Botany, 55(401), 1371-1382. doi:10.1093/jxb/erh137 es_ES
dc.description.references DELOIRE, A., & HÉBANT, C. (1982). Peroxidase Activity and Lignification at the Interface Between Stock and Scion of Compatible and Incompatible Grafts of Capsicum on Lycopersicum. Annals of Botany, 49(6), 887-891. doi:10.1093/oxfordjournals.aob.a086314 es_ES
dc.description.references Dhondt, S., Vanhaeren, H., Van Loo, D., Cnudde, V., & Inzé, D. (2010). Plant structure visualization by high-resolution X-ray computed tomography. Trends in Plant Science, 15(8), 419-422. doi:10.1016/j.tplants.2010.05.002 es_ES
dc.description.references Errea, P., Garay, L., & Marín, J. A. (2001). Early detection of graft incompatibility in apricot (Prunus armeniaca ) using in vitro techniques. Physiologia Plantarum, 112(1), 135-141. doi:10.1034/j.1399-3054.2001.1120118.x es_ES
dc.description.references Errea, P. (1998). Implications of phenolic compounds in graft incompatibility in fruit tree species. Scientia Horticulturae, 74(3), 195-205. doi:10.1016/s0304-4238(98)00087-9 es_ES
dc.description.references Errea, P., Felipe, A., & Herrero, M. (1994). Graft establishment between compatible and incompatiblePrunusspp. Journal of Experimental Botany, 45(3), 393-401. doi:10.1093/jxb/45.3.393 es_ES
dc.description.references FERNANDEZ-GARCIA, N. (2004). Graft Union Formation in Tomato Plants: Peroxidase and Catalase Involvement. Annals of Botany, 93(1), 53-60. doi:10.1093/aob/mch014 es_ES
dc.description.references Fernández-García, N., Martínez, V., & Carvajal, M. (2004). Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. Journal of Plant Nutrition and Soil Science, 167(5), 616-622. doi:10.1002/jpln.200420416 es_ES
dc.description.references Flaishman, M. A., Loginovsky, K., Golobowich, S., & Lev-Yadun, S. (2008). Arabidopsis thaliana as a Model System for Graft Union Development in Homografts and Heterografts. Journal of Plant Growth Regulation, 27(3), 231-239. doi:10.1007/s00344-008-9050-y es_ES
dc.description.references Genty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990(1), 87-92. doi:10.1016/s0304-4165(89)80016-9 es_ES
dc.description.references Goldschmidt, E. E. (2014). Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00727 es_ES
dc.description.references Guidi, L., Mori, S., Degl’Innocenti, E., & Pecchia, S. (2007). Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence. Plant Physiology and Biochemistry, 45(10-11), 851-857. doi:10.1016/j.plaphy.2007.07.001 es_ES
dc.description.references Hudina, M., Orazem, P., Jakopic, J., & Stampar, F. (2014). The phenolic content and its involvement in the graft incompatibility process of various pear rootstocks (Pyrus communis L.). Journal of Plant Physiology, 171(5), 76-84. doi:10.1016/j.jplph.2013.10.022 es_ES
dc.description.references Irisarri, P., Binczycki, P., Errea, P., Martens, H. J., & Pina, A. (2015). Oxidative stress associated with rootstock–scion interactions in pear/quince combinations during early stages of graft development. Journal of Plant Physiology, 176, 25-35. doi:10.1016/j.jplph.2014.10.015 es_ES
dc.description.references Kawaguchi, M., Taji, A., Backhouse, D., & Oda, M. (2008). Anatomy and physiology of graft incompatibility in solanaceous plants. The Journal of Horticultural Science and Biotechnology, 83(5), 581-588. doi:10.1080/14620316.2008.11512427 es_ES
dc.description.references Mudge, K., Janick, J., Scofield, S., & Goldschmidt, E. E. (2009). A History of Grafting. Horticultural Reviews, 437-493. doi:10.1002/9780470593776.ch9 es_ES
dc.description.references �quist, G., & Chow, W. S. (1992). On the relationship between the quantum yield of Photosystem II electron transport, as determined by chlorophyll fluorescence and the quantum yield of CO2-dependent O2 evolution. Photosynthesis Research, 33(1), 51-62. doi:10.1007/bf00032982 es_ES
dc.description.references OXBOROUGH, K., & BAKER, N. R. (1997). An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization. Plant, Cell and Environment, 20(12), 1473-1483. doi:10.1046/j.1365-3040.1997.d01-42.x es_ES
dc.description.references Padgett, M., & Morrison, J. C. (1990). Changes in Grape Berry Exudates during Fruit Development and Their Effect on Mycelial Growth of Botrytis cinerea. Journal of the American Society for Horticultural Science, 115(2), 269-273. doi:10.21273/jashs.115.2.269 es_ES
dc.description.references Penella, C., Nebauer, S. G., Quiñones, A., San Bautista, A., López-Galarza, S., & Calatayud, A. (2015). Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science, 230, 12-22. doi:10.1016/j.plantsci.2014.10.007 es_ES
dc.description.references Penella, C., Nebauer, S. G., Bautista, A. S., López-Galarza, S., & Calatayud, Á. (2014). Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses. Journal of Plant Physiology, 171(10), 842-851. doi:10.1016/j.jplph.2014.01.013 es_ES
dc.description.references Penella, C., Nebauer, S. G., López-Galarza, S., SanBautista, A., Rodríguez-Burruezo, A., & Calatayud, A. (2014). Evaluation of some pepper genotypes as rootstocks in water stress conditions. Horticultural Science, 41(No. 4), 192-200. doi:10.17221/163/2013-hortsci es_ES
dc.description.references Pina, A., Errea, P., & Martens, H. J. (2012). Graft union formation and cell-to-cell communication via plasmodesmata in compatible and incompatible stem unions of Prunus spp. Scientia Horticulturae, 143, 144-150. doi:10.1016/j.scienta.2012.06.017 es_ES
dc.description.references Pina, A., Errea, P., Schulz, A., & Martens, H. J. (2009). Cell-to-cell transport through plasmodesmata in tree callus cultures. Tree Physiology, 29(6), 809-818. doi:10.1093/treephys/tpp025 es_ES
dc.description.references Quilliam, R. S., Swarbrick, P. J., Scholes, J. D., & Rolfe, S. A. (2005). Imaging photosynthesis in wounded leaves of Arabidopsis thaliana. Journal of Experimental Botany, 57(1), 55-69. doi:10.1093/jxb/erj039 es_ES
dc.description.references Rolfe, S. A., & Scholes, J. D. (2010). Chlorophyll fluorescence imaging of plant–pathogen interactions. Protoplasma, 247(3-4), 163-175. doi:10.1007/s00709-010-0203-z es_ES
dc.description.references Rouphael, Y., Schwarz, D., Krumbein, A., & Colla, G. (2010). Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae, 127(2), 172-179. doi:10.1016/j.scienta.2010.09.001 es_ES
dc.description.references Sánchez-Rodríguez, E., Romero, L., & Ruiz, J. M. (2013). Role of Grafting in Resistance to Water Stress in Tomato Plants: Ammonia Production and Assimilation. Journal of Plant Growth Regulation, 32(4), 831-842. doi:10.1007/s00344-013-9348-2 es_ES
dc.description.references Savvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 127(2), 156-161. doi:10.1016/j.scienta.2010.09.011 es_ES
dc.description.references Schöning, U., & Kollmann, R. (1997). Phloem translocation in regeneratingin vitro- heterografts of different compatibility. Journal of Experimental Botany, 48(2), 289-295. doi:10.1093/jxb/48.2.289 es_ES
dc.description.references Schreiber, U., Schliwa, U., & Bilger, W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 10(1-2), 51-62. doi:10.1007/bf00024185 es_ES
dc.description.references Tadeo, F. R., Gómez-Cadenas, A., Ben-Cheikh, W., Primo-Millo, E., & Talón, M. (1997). Gibberellin-ethylene interaction controls radial expansion in citrus roots. Planta, 202(3), 370-378. doi:10.1007/s004250050139 es_ES
dc.description.references Trinchera, A., Pandozy, G., Rinaldi, S., Crinò, P., Temperini, O., & Rea, E. (2013). Graft union formation in artichoke grafting onto wild and cultivated cardoon: An anatomical study. Journal of Plant Physiology, 170(18), 1569-1578. doi:10.1016/j.jplph.2013.06.018 es_ES
dc.description.references Wang, Y., & Kollmann, R. (1996). Vascular Differentiation in the Graft Union of in-vitro Grafts with Different Compatibility. — Structural and Functional Aspects. Journal of Plant Physiology, 147(5), 521-533. doi:10.1016/s0176-1617(96)80041-1 es_ES
dc.description.references Yin, H., Yan, B., Sun, J., Jia, P., Zhang, Z., Yan, X., … Liu, H. (2012). Graft-union development: a delicate process that involves cell–cell communication between scion and stock for local auxin accumulation. Journal of Experimental Botany, 63(11), 4219-4232. doi:10.1093/jxb/ers109 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem