ARIGA, K., VINU, A., HILL, J., & MORI, T. (2007). Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coordination Chemistry Reviews, 251(21-24), 2562-2591. doi:10.1016/j.ccr.2007.02.024
Katz, E., & Willner, I. (2004). Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angewandte Chemie International Edition, 43(45), 6042-6108. doi:10.1002/anie.200400651
Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734
[+]
ARIGA, K., VINU, A., HILL, J., & MORI, T. (2007). Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coordination Chemistry Reviews, 251(21-24), 2562-2591. doi:10.1016/j.ccr.2007.02.024
Katz, E., & Willner, I. (2004). Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angewandte Chemie International Edition, 43(45), 6042-6108. doi:10.1002/anie.200400651
Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734
Puoci, F., Iemma, F., & Picci, N. (2008). Stimuli-Responsive Molecularly Imprinted Polymers for Drug Delivery: A Review. Current Drug Delivery, 5(2), 85-96. doi:10.2174/156720108783954888
Siepmann, F., Siepmann, J., Walther, M., MacRae, R. J., & Bodmeier, R. (2008). Polymer blends for controlled release coatings. Journal of Controlled Release, 125(1), 1-15. doi:10.1016/j.jconrel.2007.09.012
Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 60(15), 1638-1649. doi:10.1016/j.addr.2008.08.002
Pouton, C. W., & Porter, C. J. H. (2008). Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Advanced Drug Delivery Reviews, 60(6), 625-637. doi:10.1016/j.addr.2007.10.010
Rijcken, C. J. F., Soga, O., Hennink, W. E., & Nostrum, C. F. van. (2007). Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: An attractive tool for drug delivery. Journal of Controlled Release, 120(3), 131-148. doi:10.1016/j.jconrel.2007.03.023
Andresen, T. L., Jensen, S. S., & Jørgensen, K. (2005). Advanced strategies in liposomal cancer therapy: Problems and prospects of active and tumor specific drug release. Progress in Lipid Research, 44(1), 68-97. doi:10.1016/j.plipres.2004.12.001
Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020
Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m
Kickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751
Stein, A. (2003). Advances in Microporous and Mesoporous Solids—Highlights of Recent Progress. Advanced Materials, 15(10), 763-775. doi:10.1002/adma.200300007
Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456
Soler-Illia, G. J. A. A., & Azzaroni, O. (2011). Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chemical Society Reviews, 40(2), 1107. doi:10.1039/c0cs00208a
Saha, S., Leung, K. C.-F., Nguyen, T. D., Stoddart, J. F., & Zink, J. I. (2007). Nanovalves. Advanced Functional Materials, 17(5), 685-693. doi:10.1002/adfm.200600989
Wang, F., Liu, X., & Willner, I. (2014). DNA Switches: From Principles to Applications. Angewandte Chemie International Edition, 54(4), 1098-1129. doi:10.1002/anie.201404652
Song, N., & Yang, Y.-W. (2015). Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 44(11), 3474-3504. doi:10.1039/c5cs00243e
Trewyn, B. G., Giri, S., Slowing, I. I., & Lin, V. S.-Y. (2007). Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chemical Communications, (31), 3236. doi:10.1039/b701744h
Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053
Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., & Amorós, P. (2006). New Methods for Anion Recognition and Signaling Using Nanoscopic Gatelike Scaffoldings. Angewandte Chemie International Edition, 45(40), 6661-6664. doi:10.1002/anie.200602045
Coll, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703d
Özalp, V. C., & Schäfer, T. (2011). Aptamer-Based Switchable Nanovalves for Stimuli-Responsive Drug Delivery. Chemistry - A European Journal, 17(36), 9893-9896. doi:10.1002/chem.201101403
Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243
Wen, Y., Xu, L., Li, C., Du, H., Chen, L., Su, B., … Song, Y. (2012). DNA-based intelligent logic controlled release systems. Chemical Communications, 48(67), 8410. doi:10.1039/c2cc34501c
Zhang, Z., Balogh, D., Wang, F., & Willner, I. (2013). Smart Mesoporous SiO2 Nanoparticles for the DNAzyme-Induced Multiplexed Release of Substrates. Journal of the American Chemical Society, 135(5), 1934-1940. doi:10.1021/ja311385y
Zhou, Y., Tan, L.-L., Li, Q.-L., Qiu, X.-L., Qi, A.-D., Tao, Y., & Yang, Y.-W. (2014). Acetylcholine-Triggered Cargo Release from Supramolecular Nanovalves Based on Different Macrocyclic Receptors. Chemistry - A European Journal, 20(11), 2998-3004. doi:10.1002/chem.201304864
Chen, M., Huang, C., He, C., Zhu, W., Xu, Y., & Lu, Y. (2012). A glucose-responsive controlled release system using glucose oxidase-gated mesoporous silica nanocontainers. Chemical Communications, 48(76), 9522. doi:10.1039/c2cc34290a
Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456d
Yang, S., Li, N., Liu, Z., Sha, W., Chen, D., Xu, Q., & Lu, J. (2014). Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment. Nanoscale, 6(24), 14903-14910. doi:10.1039/c4nr05305b
Schloßbauer, A., Sauer, A. M., Cauda, V., Schmidt, A., Engelke, H., Rothbauer, U., … Bein, T. (2012). Cascaded Photoinduced Drug Delivery to Cells from Multifunctional Core-Shell Mesoporous Silica. Advanced Healthcare Materials, 1(3), 316-320. doi:10.1002/adhm.201100033
Mackowiak, S. A., Schmidt, A., Weiss, V., Argyo, C., von Schirnding, C., Bein, T., & Bräuchle, C. (2013). Targeted Drug Delivery in Cancer Cells with Red-Light Photoactivated Mesoporous Silica Nanoparticles. Nano Letters, 13(6), 2576-2583. doi:10.1021/nl400681f
Silveira, G. Q., Vargas, M. D., & Ronconi, C. M. (2011). Nanoreservoir operated by ferrocenyl linker oxidation with molecular oxygen. Journal of Materials Chemistry, 21(16), 6034. doi:10.1039/c0jm03738a
Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469
El Sayed, S., Milani, M., Milanese, C., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2016). Anions as Triggers in Controlled Release Protocols from Mesoporous Silica Nanoparticles Functionalized with Macrocyclic Copper(II) Complexes. Chemistry - A European Journal, 22(39), 13935-13945. doi:10.1002/chem.201601024
De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822
Climent, E., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Murguía, J. R., … Pérez-Payá, E. (2013). Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials:MycoplasmaDetection. Angewandte Chemie International Edition, 52(34), 8938-8942. doi:10.1002/anie.201302954
Li, H., Chen, L., Guo, Z., Sang, N., & Li, G. (2012). In vivo screening to determine neurological hazards of nitrogen dioxide (NO2) using Wistar rats. Journal of Hazardous Materials, 225-226, 46-53. doi:10.1016/j.jhazmat.2012.04.063
Folinsbee, L. J. (1993). Human health effects of air pollution. Environmental Health Perspectives, 100, 45-56. doi:10.1289/ehp.9310045
Melia, R. J., Florey, C. D., Altman, D. G., & Swan, A. V. (1977). Association between gas cooking and respiratory disease in children. BMJ, 2(6080), 149-152. doi:10.1136/bmj.2.6080.149
Neas, L. M., Dockery, D. W., Ware, J. H., Spengler, J. D., Speizer, F. E., & Ferris, B. G. (1991). Association of Indoor Nitrogen Dioxide with Respiratory Symptoms and Pulmonary Function in Children. American Journal of Epidemiology, 134(2), 204-219. doi:10.1093/oxfordjournals.aje.a116073
Meng, X., Wang, C., Cao, D., Wong, C.-M., & Kan, H. (2013). Short-term effect of ambient air pollution on COPD mortality in four Chinese cities. Atmospheric Environment, 77, 149-154. doi:10.1016/j.atmosenv.2013.05.001
Shim, S. B., Kim, K., & Kim, Y. H. (1987). Direct conversion of oximes and hydrazones into their ketones with dinitrogen tetroxide. Tetrahedron Letters, 28(6), 645-648. doi:10.1016/s0040-4039(00)95802-7
Mokhtari, J., Naimi-Jamal, M. R., Hamzeali, H., Dekamin, M. G., & Kaupp, G. (2009). Kneading Ball-Milling and Stoichiometric Melts for the Quantitative Derivatization of Carbonyl Compounds with Gas-Solid Recovery. ChemSusChem, 2(3), 248-254. doi:10.1002/cssc.200800258
Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7
Radu, D. R., Lai, C.-Y., Jeftinija, K., Rowe, E. W., Jeftinija, S., & Lin, V. S.-Y. (2004). A Polyamidoamine Dendrimer-Capped Mesoporous Silica Nanosphere-Based Gene Transfection Reagent. Journal of the American Chemical Society, 126(41), 13216-13217. doi:10.1021/ja046275m
Juárez, L. A., Costero, A. M., Parra, M., Gaviña, P., & Gil, S. (2016). 3-Formyl-BODIPY Phenylhydrazone as a Chromo-Fluorogenic Probe for Selective Detection of NO2(g). Chemistry - A European Journal, 22(25), 8448-8451. doi:10.1002/chem.201600929
[-]