Mostrar el registro sencillo del ítem
dc.contributor.author | Díaz-Parra, Antonio | es_ES |
dc.contributor.author | Canals, S. | es_ES |
dc.contributor.author | Moratal, David | es_ES |
dc.date.accessioned | 2020-07-23T03:31:21Z | |
dc.date.available | 2020-07-23T03:31:21Z | |
dc.date.issued | 2017-09-14 | es_ES |
dc.identifier.issn | 1557-170X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148522 | |
dc.description.abstract | [EN] Identification of brain states measured with electrophysiological methods such as electroencephalography and local field potential (LFP) recordings is of great importance in numerous neuroscientific applications. For instance, in Brain Computer Interface, in the diagnosis of neurological disorders as well as to investigate how brain rhythms stem from synchronized physiological mechanisms (e.g., memory and learning). In this work, we propose a fully automated method with the aim of partitioning LFP signals into stationary segments as well as classifying each detected segment into three different classes (delta, regular theta or irregular theta rhythms). Our approach is computationally efficient since the process of detection and partition of signals into stationary segments is only based on two features (the variance and the so-called spectral error measure) and allow the classification at the same time. We developed the algorithm upon analyzing six anesthetized rats, resulting in a true positive rate of 97.5%, 91.8% and 79.1% in detecting delta, irregular theta and regular theta rhythms, respectively. This preliminary quantitative evaluation offers encouraging results for further research. | es_ES |
dc.description.sponsorship | Research supported by the Spanish Ministerio de Economia y Competitividad (MINECO) under grants BFU2015-64380-C2-1-R and BFU2015-64380-C2-2R and European Union's Horizon 2020 research and innovation programme under grant agreement No 668863 (SyBil-AA). Santiago Canals acknowledges financial support from the Spanish State Research Agency, through the "Severo Ochoa" Programme for Centres of Excellence in R&D (ref. SEV- 2013-0317). Antonio Diaz-Parra is funded by the Spanish Ministerio de Educacion, Cultura y Deporte (MECD) under grant FPU13/01475. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE Engineering in Medicine and Biology Society | es_ES |
dc.relation.ispartof | Proceedings Intenational Anual Conference of IEEE Engineering in Medicine and Biology Society | es_ES |
dc.relation.ispartof | 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Signals | es_ES |
dc.subject | EEG | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | A fully automated method for segmentation and classification of local field potential recordings. Preliminary results | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1109/EMBC.2017.8036853 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/668863/EU/Systems Biology of Alcohol Addiction: Modeling and validating disease state networks in human and animal brains for understanding pathophysiolgy, predicting outcomes and improving therapy/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-1-R/ES/TRATAR LA ENFERMEDAD RESINTONIZANDO LA DINAMICA DE LAS REDES CEREBRALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2013-0317/ES/-/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU13%2F01475/ES/FPU13%2F01475/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Díaz-Parra, A.; Canals, S.; Moratal, D. (2017). A fully automated method for segmentation and classification of local field potential recordings. Preliminary results. Proceedings Intenational Anual Conference of IEEE Engineering in Medicine and Biology Society. 426-429. https://doi.org/10.1109/EMBC.2017.8036853 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2017) | es_ES |
dc.relation.conferencedate | Julio 11-15,2017 | es_ES |
dc.relation.conferenceplace | Jeju Island, South Korea | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/EMBC.2017.8036853 | es_ES |
dc.description.upvformatpinicio | 426 | es_ES |
dc.description.upvformatpfin | 429 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.identifier.pmid | 29059901 | es_ES |
dc.relation.pasarela | S\353077 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |