- -

A comprehensive mechanistic study on the visible light photocatalytic reductive dehalogenation of haloaromatics mediated by Ru(bpy)3Cl2

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A comprehensive mechanistic study on the visible light photocatalytic reductive dehalogenation of haloaromatics mediated by Ru(bpy)3Cl2

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marin Melchor, Mireia es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Marín García, Mª Luisa es_ES
dc.date.accessioned 2020-07-30T03:34:17Z
dc.date.available 2020-07-30T03:34:17Z
dc.date.issued 2017-10-21 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148869
dc.description.abstract [EN] Visible light photoredox catalysis is emerging as a versatile technique for a great variety of chemical transformations. Specifically,Ru(bpy)(3)(2+) has been widely used as a transition metal-based photocatalyst; however, little if any attention has been paid to the thermodynamic analysis of the photoredox processes that occur in the photocatalytic cycle of the studied reactions or, even more interestingly, to the examination of the kinetic feasibility of the involved processes. In addition, only a few studies on the progress of the reaction have been performed. Organic halides constitute a major concern for environmental remediation since they are reluctant towards aerobic oxidation. Therefore, p-halonitrobenzene (X-NB) derivatives have been selected in the present work as the model compounds to obtain a deeper understanding of their photocatalytic reduction using visible light and RuRu(bpy)(3)(2+). Thermodynamic estimations were made on the basis of the experimentally determined energy of the LUMO of RuRu(bpy)(3)(2+), which was determined to be 54.5 kcal mol(-1) from the cross-point of the normalized emission and excitation spectra, and redox potentials of X-NB and several sacrificial amines. As anticipated from chemical intuition, the feasibility of the global photoredox process increased upon going down in the group of halogens regardless of the participation of the oxidative or reductive quenching cycles. To unequivocally demonstrate the direct participation of the excited state of RuRu(bpy)(3)(2) in the photoreduction, steady-state and time-resolved experiments were carried out upon increasing X-NB or amine concentration; this allowed determining the quenching rate constants for the electron transfer processes, which were found to be in the range of 108 M-1 s(-1) for the X-NB and 106 M-1 s(-1) for the amines. Therefore, the main role of the oxidative quenching cycle has been demonstrated under the experimental conditions employed. A good correlation was found between the thermodynamic and kinetic parameters, in agreement with the expectations from Marcus theory. Upon optimization of the reaction conditions, reductive dehalogenation was found to occur leading to the parent nitrobenzene. es_ES
dc.description.sponsorship Generous support from the Ministerio de Economia y Competitividad (Project CTQ2012-38754-C03-03 and SEV-2016-0683) and from the Generalitat Valenciana (Prometeo Program) is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Transition-Metal-Complexes es_ES
dc.subject Photoredox catalysis es_ES
dc.subject Synthetic applications es_ES
dc.subject Organic-Synthesis es_ES
dc.subject Energy-Transfer es_ES
dc.subject Excited-State es_ES
dc.subject Photochemistry es_ES
dc.subject Discovery es_ES
dc.subject Aldehydes es_ES
dc.subject Electron es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title A comprehensive mechanistic study on the visible light photocatalytic reductive dehalogenation of haloaromatics mediated by Ru(bpy)3Cl2 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7cy01231d es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-38754-C03-03/ES/DESARROLLO DE NUEVAS ESTRATEGIAS BASADAS EN LA INTEGRACION DE PROCESOS FOTOQUIMICOS SOLARES CON OTRAS TECNICAS AVANZADAS PARA EL TRATAMIENTO DE AGUAS RESIDUALES COMPLEJAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Marin Melchor, M.; Miranda Alonso, MÁ.; Marín García, ML. (2017). A comprehensive mechanistic study on the visible light photocatalytic reductive dehalogenation of haloaromatics mediated by Ru(bpy)3Cl2. Catalysis Science & Technology. 7(20):4852-4858. https://doi.org/10.1039/c7cy01231d es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c7cy01231d es_ES
dc.description.upvformatpinicio 4852 es_ES
dc.description.upvformatpfin 4858 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 20 es_ES
dc.relation.pasarela S\347416 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ravelli, D., Dondi, D., Fagnoni, M., & Albini, A. (2009). Photocatalysis. A multi-faceted concept for green chemistry. Chemical Society Reviews, 38(7), 1999. doi:10.1039/b714786b es_ES
dc.description.references Palmisano, G., Augugliaro, V., Pagliaro, M., & Palmisano, L. (2007). Photocatalysis: a promising route for 21st century organic chemistry. Chemical Communications, (33), 3425. doi:10.1039/b700395c es_ES
dc.description.references Marin, M. L., Santos-Juanes, L., Arques, A., Amat, A. M., & Miranda, M. A. (2011). Organic Photocatalysts for the Oxidation of Pollutants and Model Compounds. Chemical Reviews, 112(3), 1710-1750. doi:10.1021/cr2000543 es_ES
dc.description.references Martinez-Haya, R., Barecka, M. H., Miro, P., Marin, M. L., & Miranda, M. A. (2015). Photocatalytic Treatment of Cork Wastewater Pollutants. Degradation of Gallic Acid and Trichloroanisole using Triphenyl(thia)pyrylium salts. Applied Catalysis B: Environmental, 179, 433-438. doi:10.1016/j.apcatb.2015.05.039 es_ES
dc.description.references Miró, P., Arques, A., Amat, A. M., Marin, M. L., & Miranda, M. A. (2013). A mechanistic study on the oxidative photodegradation of 2,6-dichlorodiphenylamine-derived drugs: Photo-Fenton versus photocatalysis with a triphenylpyrylium salt. Applied Catalysis B: Environmental, 140-141, 412-418. doi:10.1016/j.apcatb.2013.04.042 es_ES
dc.description.references Huang, L., Shen, Y., Dong, W., Zhang, R., Zhang, J., & Hou, H. (2008). A novel method to decompose two potent greenhouse gases: Photoreduction of SF6 and SF5CF3 in the presence of propene. Journal of Hazardous Materials, 151(2-3), 323-330. doi:10.1016/j.jhazmat.2007.05.080 es_ES
dc.description.references Tucker, J. W., & Stephenson, C. R. J. (2012). Shining Light on Photoredox Catalysis: Theory and Synthetic Applications. The Journal of Organic Chemistry, 77(4), 1617-1622. doi:10.1021/jo202538x es_ES
dc.description.references Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r es_ES
dc.description.references Narayanam, J. M. R., & Stephenson, C. R. J. (2011). Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev., 40(1), 102-113. doi:10.1039/b913880n es_ES
dc.description.references Xi, Y., Yi, H., & Lei, A. (2013). Synthetic applications of photoredox catalysis with visible light. Organic & Biomolecular Chemistry, 11(15), 2387. doi:10.1039/c3ob40137e es_ES
dc.description.references Alpers, D., Gallhof, M., Witt, J., Hoffmann, F., & Brasholz, M. (2017). A Photoredox-Induced Stereoselective Dearomative Radical (4+2)-Cyclization/1,4-Addition Cascade for the Synthesis of Highly Functionalized Hexahydro-1H -carbazoles. Angewandte Chemie International Edition, 56(5), 1402-1406. doi:10.1002/anie.201610974 es_ES
dc.description.references König, B. (2017). Photocatalysis in Organic Synthesis - Past, Present, and Future. European Journal of Organic Chemistry, 2017(15), 1979-1981. doi:10.1002/ejoc.201700420 es_ES
dc.description.references Teplý, F. (2011). Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Collection of Czechoslovak Chemical Communications, 76(7), 859-917. doi:10.1135/cccc2011078 es_ES
dc.description.references Bergonzini, G., Schindler, C. S., Wallentin, C.-J., Jacobsen, E. N., & Stephenson, C. R. J. (2014). Photoredox activation and anion binding catalysis in the dual catalytic enantioselective synthesis of β-amino esters. Chem. Sci., 5(1), 112-116. doi:10.1039/c3sc52265b es_ES
dc.description.references Nicewicz, D. A., & MacMillan, D. W. C. (2008). Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science, 322(5898), 77-80. doi:10.1126/science.1161976 es_ES
dc.description.references McNally, A., Prier, C. K., & MacMillan, D. W. C. (2011). Discovery of an  -Amino C-H Arylation Reaction Using the Strategy of Accelerated Serendipity. Science, 334(6059), 1114-1117. doi:10.1126/science.1213920 es_ES
dc.description.references He, K.-H., Tan, F.-F., Zhou, C.-Z., Zhou, G.-J., Yang, X.-L., & Li, Y. (2017). Acceptorless Dehydrogenation of N-Heterocycles by Merging Visible-Light Photoredox Catalysis and Cobalt Catalysis. Angewandte Chemie International Edition, 56(11), 3080-3084. doi:10.1002/anie.201612486 es_ES
dc.description.references Ruiz Espelt, L., McPherson, I. S., Wiensch, E. M., & Yoon, T. P. (2015). Enantioselective Conjugate Additions of α-Amino Radicals via Cooperative Photoredox and Lewis Acid Catalysis. Journal of the American Chemical Society, 137(7), 2452-2455. doi:10.1021/ja512746q es_ES
dc.description.references DiRocco, D. A., & Rovis, T. (2012). Catalytic Asymmetric α-Acylation of Tertiary Amines Mediated by a Dual Catalysis Mode: N-Heterocyclic Carbene and Photoredox Catalysis. Journal of the American Chemical Society, 134(19), 8094-8097. doi:10.1021/ja3030164 es_ES
dc.description.references Welin, E. R., Warkentin, A. A., Conrad, J. C., & MacMillan, D. W. C. (2015). Enantioselective α-Alkylation of Aldehydes by Photoredox Organocatalysis: Rapid Access to Pharmacophore Fragments from β-Cyanoaldehydes. Angewandte Chemie International Edition, 54(33), 9668-9672. doi:10.1002/anie.201503789 es_ES
dc.description.references Pirnot, M. T., Rankic, D. A., Martin, D. B. C., & MacMillan, D. W. C. (2013). Photoredox Activation for the Direct  -Arylation of Ketones and Aldehydes. Science, 339(6127), 1593-1596. doi:10.1126/science.1232993 es_ES
dc.description.references Beatty, J. W., & Stephenson, C. R. J. (2015). Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis. Accounts of Chemical Research, 48(5), 1474-1484. doi:10.1021/acs.accounts.5b00068 es_ES
dc.description.references Rosner, D., & Markowitz, G. (2013). Persistent pollutants: A brief history of the discovery of the widespread toxicity of chlorinated hydrocarbons. Environmental Research, 120, 126-133. doi:10.1016/j.envres.2012.08.011 es_ES
dc.description.references Limones-Herrero, D., Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2013). Bypassing the Energy Barrier of Homolytic Photodehalogenation in Chloroaromatics through Self-Quenching. Organic Letters, 15(6), 1314-1317. doi:10.1021/ol400251s es_ES
dc.description.references Alonso, F., Beletskaya, I. P., & Yus, M. (2002). Metal-Mediated Reductive Hydrodehalogenation of Organic Halides. Chemical Reviews, 102(11), 4009-4092. doi:10.1021/cr0102967 es_ES
dc.description.references Narayanam, J. M. R., Tucker, J. W., & Stephenson, C. R. J. (2009). Electron-Transfer Photoredox Catalysis: Development of a Tin-Free Reductive Dehalogenation Reaction. Journal of the American Chemical Society, 131(25), 8756-8757. doi:10.1021/ja9033582 es_ES
dc.description.references Nguyen, J. D., D’Amato, E. M., Narayanam, J. M. R., & Stephenson, C. R. J. (2012). Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions. Nature Chemistry, 4(10), 854-859. doi:10.1038/nchem.1452 es_ES
dc.description.references Martinez-Haya, R., Miranda, M. A., & Marin, M. L. (2017). Metal-Free Photocatalytic Reductive Dehalogenation Using Visible-Light: A Time-Resolved Mechanistic Study. European Journal of Organic Chemistry, 2017(15), 2164-2169. doi:10.1002/ejoc.201601494 es_ES
dc.description.references Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K., & MacMillan, D. W. C. (2017). Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II). Science, 355(6323), 380-385. doi:10.1126/science.aal2490 es_ES
dc.description.references Blum, T. R., Miller, Z. D., Bates, D. M., Guzei, I. A., & Yoon, T. P. (2016). Enantioselective photochemistry through Lewis acid–catalyzed triplet energy transfer. Science, 354(6318), 1391-1395. doi:10.1126/science.aai8228 es_ES
dc.description.references Kalyanasundaram, K. (1982). Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coordination Chemistry Reviews, 46, 159-244. doi:10.1016/0010-8545(82)85003-0 es_ES
dc.description.references Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P., & von Zelewsky, A. (1988). Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coordination Chemistry Reviews, 84, 85-277. doi:10.1016/0010-8545(88)80032-8 es_ES
dc.description.references S. L. Murov , I.Carmichael and G. L.Hug, Handbook of Photochemistry, Marcel Dekker, New York, 2nd edn, 2009 es_ES
dc.description.references Rehm, D., & Weller, A. (1970). Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Israel Journal of Chemistry, 8(2), 259-271. doi:10.1002/ijch.197000029 es_ES
dc.description.references Braslavsky, S. E. (2007). Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure and Applied Chemistry, 79(3), 293-465. doi:10.1351/pac200779030293 es_ES
dc.description.references Pitre, S. P., McTiernan, C. D., & Scaiano, J. C. (2016). Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives. Accounts of Chemical Research, 49(6), 1320-1330. doi:10.1021/acs.accounts.6b00012 es_ES
dc.description.references Morris, K. J., Roach, M. S., Xu, W., Demas, J. N., & DeGraff, B. A. (2007). Luminescence Lifetime Standards for the Nanosecond to Microsecond Range and Oxygen Quenching of Ruthenium(II) Complexes. Analytical Chemistry, 79(24), 9310-9314. doi:10.1021/ac0712796 es_ES
dc.description.references Caspar, J. V., & Meyer, T. J. (1983). Photochemistry of tris(2,2’-bipyridine)ruthenium(2+) ion (Ru(bpy)32+). Solvent effects. Journal of the American Chemical Society, 105(17), 5583-5590. doi:10.1021/ja00355a009 es_ES
dc.description.references Marcus, R. A. (1964). Chemical and Electrochemical Electron-Transfer Theory. Annual Review of Physical Chemistry, 15(1), 155-196. doi:10.1146/annurev.pc.15.100164.001103 es_ES
dc.description.references Miranda, M. A., Izquierdo, M. A., & Pérez-Ruiz, R. (2003). Direct Photophysical Evidence for Quenching of the Triplet Excited State of 2,4,6-Triphenyl(thia)pyrylium Salts by 2,3-Diaryloxetanes. The Journal of Physical Chemistry A, 107(14), 2478-2482. doi:10.1021/jp027408y es_ES
dc.description.references Ballardini, R., Varani, G., Indelli, M. T., Scandola, F., & Balzani, V. (1978). Free energy correlation of rate constants for electron transfer quenching of excited transition metal complexes. Journal of the American Chemical Society, 100(23), 7219-7223. doi:10.1021/ja00491a017 es_ES
dc.description.references Laurence, G. S., & Balzani, V. (1974). Reduction by the triplet charge-transfer state of tris(bipyridyl)ruthenium(II). Photochemical reaction between tris(bipyridyl) ruthenium(II) and thallium(III). Inorganic Chemistry, 13(12), 2976-2982. doi:10.1021/ic50142a039 es_ES
dc.description.references Rivarola, C. R., Bertolotti, S. G., & Previtali, C. M. (2006). Photoreduction of Ru(bpy)32+ by Amines in Aqueous Solution. Kinetics Characterization of a Long-Lived Nonemitting Excited State†. Photochemistry and Photobiology, 82(1), 213. doi:10.1562/2005-05-31-ra-558 es_ES
dc.description.references Pitre, S. P., McTiernan, C. D., Ismaili, H., & Scaiano, J. C. (2013). Mechanistic Insights and Kinetic Analysis for the Oxidative Hydroxylation of Arylboronic Acids by Visible Light Photoredox Catalysis: A Metal-Free Alternative. Journal of the American Chemical Society, 135(36), 13286-13289. doi:10.1021/ja406311g es_ES
dc.description.references Li, X., Hao, Z., Zhang, F., & Li, H. (2016). Reduced Graphene Oxide-Immobilized Tris(bipyridine)ruthenium(II) Complex for Efficient Visible-Light-Driven Reductive Dehalogenation Reaction. ACS Applied Materials & Interfaces, 8(19), 12141-12148. doi:10.1021/acsami.6b01100 es_ES
dc.description.references Ananthakrishnan, R., & Gazi, S. (2012). [Ru(bpy)3]2+ aided photocatalytic synthesis of 2-arylpyridines via Hantzsch reaction under visible irradiation and oxygen atmosphere. Catalysis Science & Technology, 2(7), 1463. doi:10.1039/c2cy20050c es_ES
dc.description.references Gazi, S., & Ananthakrishnan, R. (2011). Metal-free-photocatalytic reduction of 4-nitrophenol by resin-supported dye under the visible irradiation. Applied Catalysis B: Environmental, 105(3-4), 317-325. doi:10.1016/j.apcatb.2011.04.025 es_ES
dc.description.references Liu, J., Liu, Q., Yi, H., Qin, C., Bai, R., Qi, X., … Lei, A. (2013). Visible-Light-Mediated Decarboxylation/Oxidative Amidation of α-Keto Acids with Amines under Mild Reaction Conditions Using O2. Angewandte Chemie International Edition, 53(2), 502-506. doi:10.1002/anie.201308614 es_ES
dc.description.references Wang, H., Lu, Q., Chiang, C.-W., Luo, Y., Zhou, J., Wang, G., & Lei, A. (2016). Markovnikov-Selective Radical Addition of S-Nucleophiles to Terminal Alkynes through a Photoredox Process. Angewandte Chemie International Edition, 56(2), 595-599. doi:10.1002/anie.201610000 es_ES
dc.description.references Yi, H., Zhang, X., Qin, C., Liao, Z., Liu, J., & Lei, A. (2014). Visible Light-Induced γ-Alkoxynitrile SynthesisviaThree- Component Alkoxycyanomethylation of Alkenes. Advanced Synthesis & Catalysis, 356(13), 2873-2877. doi:10.1002/adsc.201400548 es_ES
dc.description.references Chen, Y., Kamlet, A. S., Steinman, J. B., & Liu, D. R. (2011). A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nature Chemistry, 3(2), 146-153. doi:10.1038/nchem.932 es_ES
dc.description.references Larraufie, M.-H., Pellet, R., Fensterbank, L., Goddard, J.-P., Lacôte, E., Malacria, M., & Ollivier, C. (2011). Visible-Light-Induced Photoreductive Generation of Radicals from Epoxides and Aziridines. Angewandte Chemie International Edition, 50(19), 4463-4466. doi:10.1002/anie.201007571 es_ES
dc.description.references Andrews, R. S., Becker, J. J., & Gagné, M. R. (2010). Intermolecular Addition of Glycosyl Halides to Alkenes Mediated by Visible Light. Angewandte Chemie International Edition, 49(40), 7274-7276. doi:10.1002/anie.201004311 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem