- -

A comprehensive mechanistic study on the visible light photocatalytic reductive dehalogenation of haloaromatics mediated by Ru(bpy)3Cl2

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A comprehensive mechanistic study on the visible light photocatalytic reductive dehalogenation of haloaromatics mediated by Ru(bpy)3Cl2

Mostrar el registro completo del ítem

Marin Melchor, M.; Miranda Alonso, MÁ.; Marín García, ML. (2017). A comprehensive mechanistic study on the visible light photocatalytic reductive dehalogenation of haloaromatics mediated by Ru(bpy)3Cl2. Catalysis Science & Technology. 7(20):4852-4858. https://doi.org/10.1039/c7cy01231d

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148869

Ficheros en el ítem

Metadatos del ítem

Título: A comprehensive mechanistic study on the visible light photocatalytic reductive dehalogenation of haloaromatics mediated by Ru(bpy)3Cl2
Autor: Marin Melchor, Mireia Miranda Alonso, Miguel Ángel Marín García, Mª Luisa
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Visible light photoredox catalysis is emerging as a versatile technique for a great variety of chemical transformations. Specifically,Ru(bpy)(3)(2+) has been widely used as a transition metal-based photocatalyst; ...[+]
Palabras clave: Transition-Metal-Complexes , Photoredox catalysis , Synthetic applications , Organic-Synthesis , Energy-Transfer , Excited-State , Photochemistry , Discovery , Aldehydes , Electron
Derechos de uso: Reserva de todos los derechos
Fuente:
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/c7cy01231d
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c7cy01231d
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2012-38754-C03-03/ES/DESARROLLO DE NUEVAS ESTRATEGIAS BASADAS EN LA INTEGRACION DE PROCESOS FOTOQUIMICOS SOLARES CON OTRAS TECNICAS AVANZADAS PARA EL TRATAMIENTO DE AGUAS RESIDUALES COMPLEJAS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
Generous support from the Ministerio de Economia y Competitividad (Project CTQ2012-38754-C03-03 and SEV-2016-0683) and from the Generalitat Valenciana (Prometeo Program) is gratefully acknowledged.
Tipo: Artículo

References

Ravelli, D., Dondi, D., Fagnoni, M., & Albini, A. (2009). Photocatalysis. A multi-faceted concept for green chemistry. Chemical Society Reviews, 38(7), 1999. doi:10.1039/b714786b

Palmisano, G., Augugliaro, V., Pagliaro, M., & Palmisano, L. (2007). Photocatalysis: a promising route for 21st century organic chemistry. Chemical Communications, (33), 3425. doi:10.1039/b700395c

Marin, M. L., Santos-Juanes, L., Arques, A., Amat, A. M., & Miranda, M. A. (2011). Organic Photocatalysts for the Oxidation of Pollutants and Model Compounds. Chemical Reviews, 112(3), 1710-1750. doi:10.1021/cr2000543 [+]
Ravelli, D., Dondi, D., Fagnoni, M., & Albini, A. (2009). Photocatalysis. A multi-faceted concept for green chemistry. Chemical Society Reviews, 38(7), 1999. doi:10.1039/b714786b

Palmisano, G., Augugliaro, V., Pagliaro, M., & Palmisano, L. (2007). Photocatalysis: a promising route for 21st century organic chemistry. Chemical Communications, (33), 3425. doi:10.1039/b700395c

Marin, M. L., Santos-Juanes, L., Arques, A., Amat, A. M., & Miranda, M. A. (2011). Organic Photocatalysts for the Oxidation of Pollutants and Model Compounds. Chemical Reviews, 112(3), 1710-1750. doi:10.1021/cr2000543

Martinez-Haya, R., Barecka, M. H., Miro, P., Marin, M. L., & Miranda, M. A. (2015). Photocatalytic Treatment of Cork Wastewater Pollutants. Degradation of Gallic Acid and Trichloroanisole using Triphenyl(thia)pyrylium salts. Applied Catalysis B: Environmental, 179, 433-438. doi:10.1016/j.apcatb.2015.05.039

Miró, P., Arques, A., Amat, A. M., Marin, M. L., & Miranda, M. A. (2013). A mechanistic study on the oxidative photodegradation of 2,6-dichlorodiphenylamine-derived drugs: Photo-Fenton versus photocatalysis with a triphenylpyrylium salt. Applied Catalysis B: Environmental, 140-141, 412-418. doi:10.1016/j.apcatb.2013.04.042

Huang, L., Shen, Y., Dong, W., Zhang, R., Zhang, J., & Hou, H. (2008). A novel method to decompose two potent greenhouse gases: Photoreduction of SF6 and SF5CF3 in the presence of propene. Journal of Hazardous Materials, 151(2-3), 323-330. doi:10.1016/j.jhazmat.2007.05.080

Tucker, J. W., & Stephenson, C. R. J. (2012). Shining Light on Photoredox Catalysis: Theory and Synthetic Applications. The Journal of Organic Chemistry, 77(4), 1617-1622. doi:10.1021/jo202538x

Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r

Narayanam, J. M. R., & Stephenson, C. R. J. (2011). Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev., 40(1), 102-113. doi:10.1039/b913880n

Xi, Y., Yi, H., & Lei, A. (2013). Synthetic applications of photoredox catalysis with visible light. Organic & Biomolecular Chemistry, 11(15), 2387. doi:10.1039/c3ob40137e

Alpers, D., Gallhof, M., Witt, J., Hoffmann, F., & Brasholz, M. (2017). A Photoredox-Induced Stereoselective Dearomative Radical (4+2)-Cyclization/1,4-Addition Cascade for the Synthesis of Highly Functionalized Hexahydro-1H -carbazoles. Angewandte Chemie International Edition, 56(5), 1402-1406. doi:10.1002/anie.201610974

König, B. (2017). Photocatalysis in Organic Synthesis - Past, Present, and Future. European Journal of Organic Chemistry, 2017(15), 1979-1981. doi:10.1002/ejoc.201700420

Teplý, F. (2011). Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Collection of Czechoslovak Chemical Communications, 76(7), 859-917. doi:10.1135/cccc2011078

Bergonzini, G., Schindler, C. S., Wallentin, C.-J., Jacobsen, E. N., & Stephenson, C. R. J. (2014). Photoredox activation and anion binding catalysis in the dual catalytic enantioselective synthesis of β-amino esters. Chem. Sci., 5(1), 112-116. doi:10.1039/c3sc52265b

Nicewicz, D. A., & MacMillan, D. W. C. (2008). Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science, 322(5898), 77-80. doi:10.1126/science.1161976

McNally, A., Prier, C. K., & MacMillan, D. W. C. (2011). Discovery of an  -Amino C-H Arylation Reaction Using the Strategy of Accelerated Serendipity. Science, 334(6059), 1114-1117. doi:10.1126/science.1213920

He, K.-H., Tan, F.-F., Zhou, C.-Z., Zhou, G.-J., Yang, X.-L., & Li, Y. (2017). Acceptorless Dehydrogenation of N-Heterocycles by Merging Visible-Light Photoredox Catalysis and Cobalt Catalysis. Angewandte Chemie International Edition, 56(11), 3080-3084. doi:10.1002/anie.201612486

Ruiz Espelt, L., McPherson, I. S., Wiensch, E. M., & Yoon, T. P. (2015). Enantioselective Conjugate Additions of α-Amino Radicals via Cooperative Photoredox and Lewis Acid Catalysis. Journal of the American Chemical Society, 137(7), 2452-2455. doi:10.1021/ja512746q

DiRocco, D. A., & Rovis, T. (2012). Catalytic Asymmetric α-Acylation of Tertiary Amines Mediated by a Dual Catalysis Mode: N-Heterocyclic Carbene and Photoredox Catalysis. Journal of the American Chemical Society, 134(19), 8094-8097. doi:10.1021/ja3030164

Welin, E. R., Warkentin, A. A., Conrad, J. C., & MacMillan, D. W. C. (2015). Enantioselective α-Alkylation of Aldehydes by Photoredox Organocatalysis: Rapid Access to Pharmacophore Fragments from β-Cyanoaldehydes. Angewandte Chemie International Edition, 54(33), 9668-9672. doi:10.1002/anie.201503789

Pirnot, M. T., Rankic, D. A., Martin, D. B. C., & MacMillan, D. W. C. (2013). Photoredox Activation for the Direct  -Arylation of Ketones and Aldehydes. Science, 339(6127), 1593-1596. doi:10.1126/science.1232993

Beatty, J. W., & Stephenson, C. R. J. (2015). Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis. Accounts of Chemical Research, 48(5), 1474-1484. doi:10.1021/acs.accounts.5b00068

Rosner, D., & Markowitz, G. (2013). Persistent pollutants: A brief history of the discovery of the widespread toxicity of chlorinated hydrocarbons. Environmental Research, 120, 126-133. doi:10.1016/j.envres.2012.08.011

Limones-Herrero, D., Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2013). Bypassing the Energy Barrier of Homolytic Photodehalogenation in Chloroaromatics through Self-Quenching. Organic Letters, 15(6), 1314-1317. doi:10.1021/ol400251s

Alonso, F., Beletskaya, I. P., & Yus, M. (2002). Metal-Mediated Reductive Hydrodehalogenation of Organic Halides. Chemical Reviews, 102(11), 4009-4092. doi:10.1021/cr0102967

Narayanam, J. M. R., Tucker, J. W., & Stephenson, C. R. J. (2009). Electron-Transfer Photoredox Catalysis: Development of a Tin-Free Reductive Dehalogenation Reaction. Journal of the American Chemical Society, 131(25), 8756-8757. doi:10.1021/ja9033582

Nguyen, J. D., D’Amato, E. M., Narayanam, J. M. R., & Stephenson, C. R. J. (2012). Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions. Nature Chemistry, 4(10), 854-859. doi:10.1038/nchem.1452

Martinez-Haya, R., Miranda, M. A., & Marin, M. L. (2017). Metal-Free Photocatalytic Reductive Dehalogenation Using Visible-Light: A Time-Resolved Mechanistic Study. European Journal of Organic Chemistry, 2017(15), 2164-2169. doi:10.1002/ejoc.201601494

Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K., & MacMillan, D. W. C. (2017). Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II). Science, 355(6323), 380-385. doi:10.1126/science.aal2490

Blum, T. R., Miller, Z. D., Bates, D. M., Guzei, I. A., & Yoon, T. P. (2016). Enantioselective photochemistry through Lewis acid–catalyzed triplet energy transfer. Science, 354(6318), 1391-1395. doi:10.1126/science.aai8228

Kalyanasundaram, K. (1982). Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coordination Chemistry Reviews, 46, 159-244. doi:10.1016/0010-8545(82)85003-0

Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P., & von Zelewsky, A. (1988). Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coordination Chemistry Reviews, 84, 85-277. doi:10.1016/0010-8545(88)80032-8

S. L. Murov , I.Carmichael and G. L.Hug, Handbook of Photochemistry, Marcel Dekker, New York, 2nd edn, 2009

Rehm, D., & Weller, A. (1970). Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Israel Journal of Chemistry, 8(2), 259-271. doi:10.1002/ijch.197000029

Braslavsky, S. E. (2007). Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure and Applied Chemistry, 79(3), 293-465. doi:10.1351/pac200779030293

Pitre, S. P., McTiernan, C. D., & Scaiano, J. C. (2016). Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives. Accounts of Chemical Research, 49(6), 1320-1330. doi:10.1021/acs.accounts.6b00012

Morris, K. J., Roach, M. S., Xu, W., Demas, J. N., & DeGraff, B. A. (2007). Luminescence Lifetime Standards for the Nanosecond to Microsecond Range and Oxygen Quenching of Ruthenium(II) Complexes. Analytical Chemistry, 79(24), 9310-9314. doi:10.1021/ac0712796

Caspar, J. V., & Meyer, T. J. (1983). Photochemistry of tris(2,2’-bipyridine)ruthenium(2+) ion (Ru(bpy)32+). Solvent effects. Journal of the American Chemical Society, 105(17), 5583-5590. doi:10.1021/ja00355a009

Marcus, R. A. (1964). Chemical and Electrochemical Electron-Transfer Theory. Annual Review of Physical Chemistry, 15(1), 155-196. doi:10.1146/annurev.pc.15.100164.001103

Miranda, M. A., Izquierdo, M. A., & Pérez-Ruiz, R. (2003). Direct Photophysical Evidence for Quenching of the Triplet Excited State of 2,4,6-Triphenyl(thia)pyrylium Salts by 2,3-Diaryloxetanes. The Journal of Physical Chemistry A, 107(14), 2478-2482. doi:10.1021/jp027408y

Ballardini, R., Varani, G., Indelli, M. T., Scandola, F., & Balzani, V. (1978). Free energy correlation of rate constants for electron transfer quenching of excited transition metal complexes. Journal of the American Chemical Society, 100(23), 7219-7223. doi:10.1021/ja00491a017

Laurence, G. S., & Balzani, V. (1974). Reduction by the triplet charge-transfer state of tris(bipyridyl)ruthenium(II). Photochemical reaction between tris(bipyridyl) ruthenium(II) and thallium(III). Inorganic Chemistry, 13(12), 2976-2982. doi:10.1021/ic50142a039

Rivarola, C. R., Bertolotti, S. G., & Previtali, C. M. (2006). Photoreduction of Ru(bpy)32+ by Amines in Aqueous Solution. Kinetics Characterization of a Long-Lived Nonemitting Excited State†. Photochemistry and Photobiology, 82(1), 213. doi:10.1562/2005-05-31-ra-558

Pitre, S. P., McTiernan, C. D., Ismaili, H., & Scaiano, J. C. (2013). Mechanistic Insights and Kinetic Analysis for the Oxidative Hydroxylation of Arylboronic Acids by Visible Light Photoredox Catalysis: A Metal-Free Alternative. Journal of the American Chemical Society, 135(36), 13286-13289. doi:10.1021/ja406311g

Li, X., Hao, Z., Zhang, F., & Li, H. (2016). Reduced Graphene Oxide-Immobilized Tris(bipyridine)ruthenium(II) Complex for Efficient Visible-Light-Driven Reductive Dehalogenation Reaction. ACS Applied Materials & Interfaces, 8(19), 12141-12148. doi:10.1021/acsami.6b01100

Ananthakrishnan, R., & Gazi, S. (2012). [Ru(bpy)3]2+ aided photocatalytic synthesis of 2-arylpyridines via Hantzsch reaction under visible irradiation and oxygen atmosphere. Catalysis Science & Technology, 2(7), 1463. doi:10.1039/c2cy20050c

Gazi, S., & Ananthakrishnan, R. (2011). Metal-free-photocatalytic reduction of 4-nitrophenol by resin-supported dye under the visible irradiation. Applied Catalysis B: Environmental, 105(3-4), 317-325. doi:10.1016/j.apcatb.2011.04.025

Liu, J., Liu, Q., Yi, H., Qin, C., Bai, R., Qi, X., … Lei, A. (2013). Visible-Light-Mediated Decarboxylation/Oxidative Amidation of α-Keto Acids with Amines under Mild Reaction Conditions Using O2. Angewandte Chemie International Edition, 53(2), 502-506. doi:10.1002/anie.201308614

Wang, H., Lu, Q., Chiang, C.-W., Luo, Y., Zhou, J., Wang, G., & Lei, A. (2016). Markovnikov-Selective Radical Addition of S-Nucleophiles to Terminal Alkynes through a Photoredox Process. Angewandte Chemie International Edition, 56(2), 595-599. doi:10.1002/anie.201610000

Yi, H., Zhang, X., Qin, C., Liao, Z., Liu, J., & Lei, A. (2014). Visible Light-Induced γ-Alkoxynitrile SynthesisviaThree- Component Alkoxycyanomethylation of Alkenes. Advanced Synthesis & Catalysis, 356(13), 2873-2877. doi:10.1002/adsc.201400548

Chen, Y., Kamlet, A. S., Steinman, J. B., & Liu, D. R. (2011). A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nature Chemistry, 3(2), 146-153. doi:10.1038/nchem.932

Larraufie, M.-H., Pellet, R., Fensterbank, L., Goddard, J.-P., Lacôte, E., Malacria, M., & Ollivier, C. (2011). Visible-Light-Induced Photoreductive Generation of Radicals from Epoxides and Aziridines. Angewandte Chemie International Edition, 50(19), 4463-4466. doi:10.1002/anie.201007571

Andrews, R. S., Becker, J. J., & Gagné, M. R. (2010). Intermolecular Addition of Glycosyl Halides to Alkenes Mediated by Visible Light. Angewandte Chemie International Edition, 49(40), 7274-7276. doi:10.1002/anie.201004311

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem