- -

Symplectic time-average propagators for the Schrodinger equation with a time-dependent Hamiltonian

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Symplectic time-average propagators for the Schrodinger equation with a time-dependent Hamiltonian

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casas, Fernando es_ES
dc.contributor.author Murua, Ander es_ES
dc.date.accessioned 2020-07-30T03:34:46Z
dc.date.available 2020-07-30T03:34:46Z
dc.date.issued 2017-03-21 es_ES
dc.identifier.issn 0021-9606 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148881
dc.description.abstract [EN] Several symplectic splitting methods of orders four and six are presented for the step-by-step time numerical integration of the Schrodinger equation when the Hamiltonian is a general explicitly time-dependent real operator. They involve linear combinations of the Hamiltonian evaluated at some intermediate points. We provide the algorithm and the coefficients of the methods, as well as some numerical examples showing their superior performance with respect to other available schemes. Published by AIP Publishing. es_ES
dc.description.sponsorship The authors acknowledge Ministerio de Economia y Competitividad (Spain) for financial support through Project Nos. MTM2013-46553-C3 and MTM2016-77660-P (AEI/FEDER, UE). Additionally, A.M. has been partially supported by the Basque Government (Consolidated Research Group No. IT649-13). es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof The Journal of Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Wave-Packet dynamics es_ES
dc.subject Splitting methods es_ES
dc.subject Runge-Kutta es_ES
dc.subject Quantum es_ES
dc.subject Convergence es_ES
dc.subject Integrators es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Symplectic time-average propagators for the Schrodinger equation with a time-dependent Hamiltonian es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4978410 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Eusko Jaurlaritza//IT649-13/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-46553-C3-2-P/ES/ASPECTOS ALGEBRAICOS Y COMPUTACIONALES EN INTEGRACION GEOMETRICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-46553-C3-3-P/ES/METODOS DE ESCISION Y COMPOSICION EN INTEGRACION NUMERICA GEOMETRICA. TEORIA Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77660-P/ES/NUEVOS RETOS EN INTEGRACION NUMERICA: FUNDAMENTOS ALGEBRAICOS, METODOS DE ESCISION, METODOS DE MONTECARLO Y OTRAS APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Blanes Zamora, S.; Casas, F.; Murua, A. (2017). Symplectic time-average propagators for the Schrodinger equation with a time-dependent Hamiltonian. The Journal of Chemical Physics. 146(11):1-10. https://doi.org/10.1063/1.4978410 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1063/1.4978410 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 146 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 28330361 es_ES
dc.relation.pasarela S\354426 es_ES
dc.contributor.funder Gobierno Vasco/Eusko Jaurlaritza es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Castro, A., Marques, M. A. L., & Rubio, A. (2004). Propagators for the time-dependent Kohn–Sham equations. The Journal of Chemical Physics, 121(8), 3425-3433. doi:10.1063/1.1774980 es_ES
dc.description.references Kormann, K., Holmgren, S., & Karlsson, H. O. (2008). Accurate time propagation for the Schrödinger equation with an explicitly time-dependent Hamiltonian. The Journal of Chemical Physics, 128(18), 184101. doi:10.1063/1.2916581 es_ES
dc.description.references Poulin, D., Qarry, A., Somma, R., & Verstraete, F. (2011). Quantum Simulation of Time-Dependent Hamiltonians and the Convenient Illusion of Hilbert Space. Physical Review Letters, 106(17). doi:10.1103/physrevlett.106.170501 es_ES
dc.description.references Lubich, C. (2008). From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. doi:10.4171/067 es_ES
dc.description.references Jahnke, T., & Lubich, C. (2000). Bit Numerical Mathematics, 40(4), 735-744. doi:10.1023/a:1022396519656 es_ES
dc.description.references Neuhauser, C., & Thalhammer, M. (2009). On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential. BIT Numerical Mathematics, 49(1), 199-215. doi:10.1007/s10543-009-0215-2 es_ES
dc.description.references Thalhammer, M. (2008). High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations. SIAM Journal on Numerical Analysis, 46(4), 2022-2038. doi:10.1137/060674636 es_ES
dc.description.references Thalhammer, M. (2012). Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations. SIAM Journal on Numerical Analysis, 50(6), 3231-3258. doi:10.1137/120866373 es_ES
dc.description.references Park, T. J., & Light, J. C. (1986). Unitary quantum time evolution by iterative Lanczos reduction. The Journal of Chemical Physics, 85(10), 5870-5876. doi:10.1063/1.451548 es_ES
dc.description.references Blanes, S., Casas, F., & Murua, A. (2015). An efficient algorithm based on splitting for the time integration of the Schrödinger equation. Journal of Computational Physics, 303, 396-412. doi:10.1016/j.jcp.2015.09.047 es_ES
dc.description.references Feit, M. ., Fleck, J. ., & Steiger, A. (1982). Solution of the Schrödinger equation by a spectral method. Journal of Computational Physics, 47(3), 412-433. doi:10.1016/0021-9991(82)90091-2 es_ES
dc.description.references Tremblay, J. C., & Carrington, T. (2004). Using preconditioned adaptive step size Runge-Kutta methods for solving the time-dependent Schrödinger equation. The Journal of Chemical Physics, 121(23), 11535-11541. doi:10.1063/1.1814103 es_ES
dc.description.references Sanz‐Serna, J. M., & Portillo, A. (1996). Classical numerical integrators for wave‐packet dynamics. The Journal of Chemical Physics, 104(6), 2349-2355. doi:10.1063/1.470930 es_ES
dc.description.references Peskin, U., Kosloff, R., & Moiseyev, N. (1994). The solution of the time dependent Schrödinger equation by the (t,t’) method: The use of global polynomial propagators for time dependent Hamiltonians. The Journal of Chemical Physics, 100(12), 8849-8855. doi:10.1063/1.466739 es_ES
dc.description.references Lauvergnat, D., Blasco, S., Chapuisat, X., & Nauts, A. (2007). A simple and efficient evolution operator for time-dependent Hamiltonians: the Taylor expansion. The Journal of Chemical Physics, 126(20), 204103. doi:10.1063/1.2735315 es_ES
dc.description.references Tal-Ezer, H., Kosloff, R., & Cerjan, C. (1992). Low-order polynomial approximation of propagators for the time-dependent Schrödinger equation. Journal of Computational Physics, 100(1), 179-187. doi:10.1016/0021-9991(92)90318-s es_ES
dc.description.references Ndong, M., Tal-Ezer, H., Kosloff, R., & Koch, C. P. (2010). A Chebychev propagator with iterative time ordering for explicitly time-dependent Hamiltonians. The Journal of Chemical Physics, 132(6), 064105. doi:10.1063/1.3312531 es_ES
dc.description.references Tal-Ezer, H., Kosloff, R., & Schaefer, I. (2012). New, Highly Accurate Propagator for the Linear and Nonlinear Schrödinger Equation. Journal of Scientific Computing, 53(1), 211-221. doi:10.1007/s10915-012-9583-x es_ES
dc.description.references Blanes, S., Casas, F., & Murua, A. (2007). Splitting methods for non-autonomous linear systems. International Journal of Computer Mathematics, 84(6), 713-727. doi:10.1080/00207160701458567 es_ES
dc.description.references Blanes, S., Casas, F., & Murua, A. (2011). Splitting methods in the numerical integration of non-autonomous dynamical systems. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 106(1), 49-66. doi:10.1007/s13398-011-0024-8 es_ES
dc.description.references Gray, S. K., & Manolopoulos, D. E. (1996). Symplectic integrators tailored to the time‐dependent Schrödinger equation. The Journal of Chemical Physics, 104(18), 7099-7112. doi:10.1063/1.471428 es_ES
dc.description.references Gray, S. K., & Verosky, J. M. (1994). Classical Hamiltonian structures in wave packet dynamics. The Journal of Chemical Physics, 100(7), 5011-5022. doi:10.1063/1.467219 es_ES
dc.description.references Blanes, S., Casas, F., & Murua, A. (2006). Symplectic splitting operator methods for the time-dependent Schrödinger equation. The Journal of Chemical Physics, 124(23), 234105. doi:10.1063/1.2203609 es_ES
dc.description.references Blanes, S., Casas, F., & Murua, A. (2007). On the Linear Stability of Splitting Methods. Foundations of Computational Mathematics, 8(3), 357-393. doi:10.1007/s10208-007-9007-8 es_ES
dc.description.references Blanes, S., Casas, F., & Murua, A. (2011). Error Analysis of Splitting Methods for the Time Dependent Schrödinger Equation. SIAM Journal on Scientific Computing, 33(4), 1525-1548. doi:10.1137/100794535 es_ES
dc.description.references Sanz-Serna, J. M., & Calvo, M. P. (1994). Numerical Hamiltonian Problems. doi:10.1007/978-1-4899-3093-4 es_ES
dc.description.references Blanes, S., & Moan, P. C. (2002). Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. Journal of Computational and Applied Mathematics, 142(2), 313-330. doi:10.1016/s0377-0427(01)00492-7 es_ES
dc.description.references Rosen, N., & Zener, C. (1932). Double Stern-Gerlach Experiment and Related Collision Phenomena. Physical Review, 40(4), 502-507. doi:10.1103/physrev.40.502 es_ES
dc.description.references Kyoseva, E. S., Vitanov, N. V., & Shore, B. W. (2007). Physical realization of coupled Hilbert-space mirrors for quantum-state engineering. Journal of Modern Optics, 54(13-15), 2237-2257. doi:10.1080/09500340701352060 es_ES
dc.description.references Walker, R. B., & Preston, R. K. (1977). Quantum versus classical dynamics in the treatment of multiple photon excitation of the anharmonic oscillator. The Journal of Chemical Physics, 67(5), 2017. doi:10.1063/1.435085 es_ES
dc.description.references Li, X., Wang, W., Lu, M., Zhang, M., & Li, Y. (2012). Structure-preserving modelling of elastic waves: a symplectic discrete singular convolution differentiator method. Geophysical Journal International, 188(3), 1382-1392. doi:10.1111/j.1365-246x.2011.05344.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem