- -

FIB-FESEM and EMPA results on Antoninianus silver coins for manufacturing and corrosion processes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

FIB-FESEM and EMPA results on Antoninianus silver coins for manufacturing and corrosion processes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Domenech Carbo, Mª Teresa es_ES
dc.contributor.author Di Turo, Francesca es_ES
dc.contributor.author Montoya, Noemi es_ES
dc.contributor.author Catalli, Fiorenzo es_ES
dc.contributor.author DOMÉNECH CARBÓ, ANTONIO es_ES
dc.contributor.author De Vito, Caterina es_ES
dc.date.accessioned 2020-09-05T03:30:25Z
dc.date.available 2020-09-05T03:30:25Z
dc.date.issued 2018-07-16 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149454
dc.description.abstract [EN] A set of ancient Antoninianus silver coins, dating back between 249 and 274¿A.D. and minted in Rome, Galliae, Orient and Ticinum, have been characterized. We use, for the first time, a combination of nano-invasive (focused ion beam-field emission scanning electron microscopy-X-ray microanalysis (FIB-FESEM-EDX), voltammetry of microparticles (VIMP)) and destructive techniques (scanning electron microscopy (SEM-EDX) and electron microprobe analysis (EMPA)) along with non-invasive, i.e., micro-Raman spectroscopy. The results revealed that, contrary to the extended belief, a complex Ag-Cu-Pb-Sn alloy was used. The use of alloys was common in the flourishing years of the Roman Empire. In the prosperous periods, Romans produced Ag-Cu alloys with relatively high silver content for the manufacture of both the external layers and inner nucleus of coins. This study also revealed that, although surface silvering processes were applied in different periods of crisis under the reign of Antoninii, even during crisis, Romans produced Antoninianus of high quality. Moreover, a first attempt to improve the silvering procedure using Hg-Ag amalgam has been identified. es_ES
dc.description.sponsorship Financial support was provided by Sapienza University of Rome (Ateneo funding, 2014 15) and Spanish projects CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P, which are supported with Ministerio de Economía, Industria y Competitividad (MINECO) and Fondo Europeo de Desarrollo Regional (ERDF) funds, as well as project CTQ2017-85317-C2-1-P supported with funds from, MINECO, ERDF and Agencia Estatal de Investigación (AEI). PhD grants of the Department of Earth Sciences, Sapienza University of Rome, are gratefully acknowledged es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification PINTURA es_ES
dc.title FIB-FESEM and EMPA results on Antoninianus silver coins for manufacturing and corrosion processes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-018-28990-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2014-53736-C3-1-P/ES/APLICACION DE LAS TECNICAS NANOELECTROQUIMICAS Y BIOTECNOLOGIAS EN EL ESTUDIO Y CONSERVACION DEL PATRIMONIO EN METAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-85317-C2-1-P/ES/APLICACION DE TECNICAS AVANZADAS DE MICROSCOPIA EN EL ESTUDIO DEL PATRIMONIO CERAMICO Y VITREO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals es_ES
dc.description.bibliographicCitation Domenech Carbo, MT.; Di Turo, F.; Montoya, N.; Catalli, F.; Doménech Carbó, A.; De Vito, C. (2018). FIB-FESEM and EMPA results on Antoninianus silver coins for manufacturing and corrosion processes. Scientific Reports. 8. https://doi.org/10.1038/s41598-018-28990-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-018-28990-x es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.pmid 30013104 es_ES
dc.identifier.pmcid PMC6048157 es_ES
dc.relation.pasarela S\379556 es_ES
dc.contributor.funder Sapienza Università di Roma es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Doménech-Carbó, A., del Hoyo-Meléndez, J. M., Doménech-Carbó, M. T. & Piquero-Cilla, J. Electrochemical analysis of the first Polish coins using voltammetry of immobilized particles. Microchem. J. 130, 47–55 (2017). es_ES
dc.description.references Di Turo, F. et al. Archaeometric analysis of Roman bronze coins from the Magna Mater temple using solid-state voltammetry and electrochemical impedance spectroscopy. Anal. Chim. Acta 955, 36–47 (2017). es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T. & Peiró-Ronda, M. A. Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Anal. Chem. 83, 5639–5644 (2011). es_ES
dc.description.references Giumlia-Mair, A. et al. Surface characterisation techniques in the study and conservation of art and archaeological artefacts: a review. Materials Technology 25(5), 245–261 (2010). es_ES
dc.description.references Robbiola, L. & Portier, R. A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. Journal of Cultural Heritage 7, 1–12 (2006). es_ES
dc.description.references Campbell, W. Greek and Roman plated coins, Numismatics Notes and Monographs 57, American Numismatic Society, New York (1933). es_ES
dc.description.references Kallithrakas-Kontos, N., Katsanos, A. A. & Touratsoglou, J. Trace element analysis of Alexander the Great’s silver tetradrachms minted in Macedonia, Nuclear Instruments and Methods in Physics. Research B 171, 342–349 (2000). es_ES
dc.description.references Catalli, F. Numismatica greca e romana. (Libreria dello Stato, 2003). es_ES
dc.description.references Cope, L. H. The Metallurgical development of the Roman Imperial Coinage during the first five centuries. (Liverpool, 1974). es_ES
dc.description.references Scriptores Historiae Augustae. Historia Augusta. (The Perfect Library, 2014). es_ES
dc.description.references Vlachou-Mogire, C., Stern, B. & McDonnell, J. G. The application of LA-ICP-MS in the examination of the thin plating layers found in late Roman coins. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 265, 558–568 (2007). es_ES
dc.description.references Keturakis, C. J. et al. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques. Appl. Surf. Sci. 376, 241–251 (2016). es_ES
dc.description.references Ingo, G. M. et al. Roman sophisticated surface modification methods to manufacture silver counterfeited coins. Appl. Surf. Sci. 1–11, https://doi.org/10.1016/j.apsusc.2017.01.101 (2017). es_ES
dc.description.references La Niece, S. In: La Niece S. & Craddock, P. (Eds), Metal, Plating and Platination, Butterworth–Heinemann, London, 1993, p. 201. es_ES
dc.description.references Anheuser, K. & France, P. Silver plating technology of the late 3rd century Roman coinage. Historical Metallurgy 36(1), 17–23 (2002). es_ES
dc.description.references Anheuser, K. & Northover, P. Silver plating on Roman and Celtic coins from Britain– A technical study. The British Numismatic Journal 64, 22–32 (1994). es_ES
dc.description.references Anheuser, K. Where is all the amalgam silvering? Materials Issues1996 in Art and Archaeology - V proceedings, Boston. es_ES
dc.description.references Beck, L. et al. In NIM 269, 2011 and in Counterfeit coinage of the Holy Roman Empire in the 16th century: silvering process and archaeometallurgical replications, Archaeometallurgy in Europe III. es_ES
dc.description.references Deraisme, A., Beck, L., Pilon, F. & Barrandon, J. N. A study of the silvering process of the Gallo-Roman coins forged during the third century AD. Archaeometry 48, 469–480 (2006). es_ES
dc.description.references Giumlia-Mair, A. On surface analysis and archaeometallurgy. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 239, 35–43 (2005). es_ES
dc.description.references Tate, J. Some problems in analysing museum material by nondestructive surface sensitive techniques. Nuclear Inst. and Methods in Physics Research, B, 14 (1), pp. 20–23 (1986). es_ES
dc.description.references Beck, L., Bosonnet, S., Réveillon, S., Eliot, D. & Pilon, F. Silver surface enrichment of silver-copper alloys: A limitation for the analysis of ancient silver coins by surface techniques. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 226, 153–162 (2004). es_ES
dc.description.references Pardini, L. et al. X-ray fluorescence and laser-induced breakdown spectroscopy analysis of Roman silver denarii. Spectrochim. Acta - Part B At. Spectrosc. 74–75, 156–161 (2012). es_ES
dc.description.references Klockenkämper, R., Bubert, H. & Hasler, K. Detection of near-surface silver enrichment on Roman imperial silver coins by x-ray spectral analysis. Archaeometry 41, 311–320 (1999). es_ES
dc.description.references Ponting, M., Evans, J. A. & Pashley, V. Fingerprinting of roman mints using laser-amblation MC-ICP-MS lead isotope analysis. es_ES
dc.description.references Del Hoyo-Meléndez, J. M. et al. Micro-XRF analysis of silver coins from medieval Poland. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 349, 6–16 (2015). es_ES
dc.description.references Cesare Brandi. Il restauro. Teoria e pratica (1939–1986). (Editori Riuniti, 2009). es_ES
dc.description.references Barberio, M., Veltri, S., Scisciò, M. & Antici, P. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage. Sci. Rep. 7, 40415 (2017). es_ES
dc.description.references Linke, R., Sehreiner, M., Demortier, G., Alram, M. & Winter, H. Non-Destructive Microanalysis of Cultural Heritage Materials. Comprehensive Analytical Chemistry 42, (Elsevier, 2004). es_ES
dc.description.references Łojewska, J. et al. Recognizing ancient papyri by a combination of spectroscopic, diffractional and chromatographic analytical tools. Sci. Rep. 7, 46236 (2017). es_ES
dc.description.references Meulebroeck, W., Wouters, H., Nys, K. & Thienpont, H. Authenticity screening of stained glass windows using optical spectroscopy. Nat. Sci. Reports 6 37726, 1–10 (2016). es_ES
dc.description.references Martina, I., Wiesinger, R. & Schreiner, M. Micro-Raman Characterisation of Silver Corrosion Products: Instrumental Set Up and Reference. e-Preservation. Sci. Rep 9, 1–8 (2012). es_ES
dc.description.references Rizzo, F. et al. Non-destructive determination of the silver content in Roman coins (nummi), dated to 308–311 A. D., by the combined use of PIXE-alpha, XRF and DPAA techniques. Microchem. J. 97, 286–290 (2011). es_ES
dc.description.references Carl, M. & Young, M. L. Complementary analytical methods for analysis of Ag-plated cultural heritage objects. Microchem. J. 126, 307–315 (2016). es_ES
dc.description.references Cepriá, G., Abadías, O., Pérez-Arantegui, J. & Castillo, J. R. Electrochemical Behavior of Silver-Copper Alloys in Voltammetry of Microparticles: A Simple Method for Screening Purposes. Electroanalysis 13, 477–483 (2001). es_ES
dc.description.references Capelo, S., Homem, P. M., Cavalheiro, J. & Fonseca, I. T. E. Linear sweep voltammetry: a cheap and powerful technique for the identification of the silver tarnish layer constituents. J. Solid State Electrochem. 17, 223–234 (2013). es_ES
dc.description.references Doménech-Carbó, A. et al. Detection of archaeological forgeries of Iberian lead plates using nanoelectrochemical techniques. The lot of fake plates from Bugarra (Spain). Forensic Sci. Int. 247, 79–88 (2015). es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T. & Peiró-Ronda, M. A. ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis 23, 1391–1400 (2011). es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., Montagna, E., Álvarez-Romero, C. & Lee, Y. Electrochemical discrimination of mints: The last Chinese emperors Kuang Hsü and Hsüan T’ung monetary unification. Talanta1 69, 50–56 (2017). es_ES
dc.description.references Ager, F. J. et al. Combining XRF and GRT for the analysis of ancient silver coins. Microchem. J. 126, 149–154 (2016). es_ES
dc.description.references Fawcett, T., Blanton, J., Blanton, T., Arias, L. & Suscavage, T. Non-destructive evaluation of Roman coin patinas from the 3rd and 4th century. Powder Diffraction, 1–10. es_ES
dc.description.references Salvemini, F. et al. Neutron tomographic analysis: Material characterization of silver and electrum coins from the 6th and 5th centuries B.C. Mater. Charact. 118, 175–185 (2016). es_ES
dc.description.references Ashkenazi, D., Gitler, H., Stern, A. & Tal, O. Metallurgical investigation on fourth century BCE silver jewellery of two hoards from Samaria. Sci. Rep. 7, 40659 (2017). es_ES
dc.description.references Romano, F. P., Garraffo, S., Pappalardo, L. & Rizzo, F. In situ investigation of the surface silvering of late Roman coins by combined use of high energy broad-beam and low energy micro-beam X-ray fluorescence techniques. Spectrochim. Acta - Part B At. Spectrosc. 73, 13–19 (2012). es_ES
dc.description.references Ingo, G. M. et al. Ancient Mercury-Based Plating Methods: Combined Use of Surface Analytical Techniques for the Study of Manufacturing Process and Degradation Phenomena. Accounts of Chemical Research 46(11), 2365–2375. es_ES
dc.description.references Pouchou, J. L. & Pichoir, F.¨PAP¨ (ϕ–ρ–Z) procedure for improved quantitative microanalysis, in: Armstrong, J. T. (Ed.), Microbeam Analysis, San Francisco Press, San Francisco, pp. 104–106 (1985). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem