Mostrar el registro sencillo del ítem
dc.contributor.author | Cambra-Baseca, Carlos | es_ES |
dc.contributor.author | Sendra, Sandra | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Lacuesta, Raquel | es_ES |
dc.date.accessioned | 2020-09-05T03:30:31Z | |
dc.date.available | 2020-09-05T03:30:31Z | |
dc.date.issued | 2018-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149455 | |
dc.description.abstract | [EN] Improving the sustainability in agriculture is nowadays an important challenge. The automation of irrigation processes via low-cost sensors can to spread technological advances in a sector very influenced by economical costs. This article presents an auto-calibrated pH sensor able to detect and adjust the imbalances in the pH levels of the nutrient solution used in hydroponic agriculture. The sensor is composed by a pH probe and a set of micropumps that sequentially pour the different liquid solutions to maintain the sensor calibration and the water samples from the channels that contain the nutrient solution. To implement our architecture, we use an auto-calibrated pH sensor connected to a wireless node. Several nodes compose our wireless sensor networks (WSN) to control our greenhouse. The sensors periodically measure the pH level of each hydroponic support and send the information to a data base (DB) which stores and analyzes the data to warn farmers about the measures. The data can then be accessed through a user-friendly, web-based interface that can be accessed through the Internet by using desktop or mobile devices. This paper also shows the design and test bench for both the auto-calibrated pH sensor and the wireless network to check their correct operation. | es_ES |
dc.description.sponsorship | The research leading to these results has received funding from "la Caixa" Foundation and Triptolemos Foundation. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Wireless sensor networks (WSNs) | es_ES |
dc.subject | Internet of Things (IoT) | es_ES |
dc.subject | Hydroponic agriculture | es_ES |
dc.subject | Potential of hydrogen (pH) sensor | es_ES |
dc.subject | Smart farming | es_ES |
dc.subject | Precision agriculture | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s18051333 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//ERANETMED3-227 SMARTWATIR/EU/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Cambra-Baseca, C.; Sendra, S.; Lloret, J.; Lacuesta, R. (2018). Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming. Sensors. 18(5):1-16. https://doi.org/10.3390/s18051333 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s18051333 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 29693611 | es_ES |
dc.identifier.pmcid | PMC5981803 | es_ES |
dc.relation.pasarela | S\361211 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |
dc.description.references | Salley, S. W., Sleezer, R. O., Bergstrom, R. M., Martin, P. H., & Kelly, E. F. (2016). A long-term analysis of the historical dry boundary for the Great Plains of North America: Implications of climatic variability and climatic change on temporal and spatial patterns in soil moisture. Geoderma, 274, 104-113. doi:10.1016/j.geoderma.2016.03.020 | es_ES |
dc.description.references | Yang, H., Du, T., Qiu, R., Chen, J., Wang, F., Li, Y., … Kang, S. (2017). Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agricultural Water Management, 179, 193-204. doi:10.1016/j.agwat.2016.05.029 | es_ES |
dc.description.references | Ferentinos, K. P., Katsoulas, N., Tzounis, A., Bartzanas, T., & Kittas, C. (2017). Wireless sensor networks for greenhouse climate and plant condition assessment. Biosystems Engineering, 153, 70-81. doi:10.1016/j.biosystemseng.2016.11.005 | es_ES |
dc.description.references | Ibayashi, H., Kaneda, Y., Imahara, J., Oishi, N., Kuroda, M., & Mineno, H. (2016). A Reliable Wireless Control System for Tomato Hydroponics. Sensors, 16(5), 644. doi:10.3390/s16050644 | es_ES |
dc.description.references | Ntinas, G. K., Neumair, M., Tsadilas, C. D., & Meyer, J. (2017). Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. Journal of Cleaner Production, 142, 3617-3626. doi:10.1016/j.jclepro.2016.10.106 | es_ES |
dc.description.references | Europapress Newshttp://www.europapress.es/andalucia/almeria-00350/noticia-superficie-invernaderos-crece-105-ultimos-cuatro-anos-llegar-29596-hectareas-20150213102204.html | es_ES |
dc.description.references | Treftz, C., & Omaye, S. T. (2016). Hydroponics: potential for augmenting sustainable food production in non-arable regions. Nutrition & Food Science, 46(5), 672-684. doi:10.1108/nfs-10-2015-0118 | es_ES |
dc.description.references | De Anda, J., & Shear, H. (2017). Potential of Vertical Hydroponic Agriculture in Mexico. Sustainability, 9(1), 140. doi:10.3390/su9010140 | es_ES |
dc.description.references | Croft, M. M., Hallett, S. G., & Marshall, M. I. (2017). Hydroponic production of vegetable Amaranth (Amaranthus cruentus) for improving nutritional security and economic viability in Kenya. Renewable Agriculture and Food Systems, 32(6), 552-561. doi:10.1017/s1742170516000478 | es_ES |
dc.description.references | Ferrarezi, R. S., & Testezlaf, R. (2014). Performance of wick irrigation system using self-compensating troughs with substrates for lettuce production. Journal of Plant Nutrition, 39(1), 147-161. doi:10.1080/01904167.2014.983127 | es_ES |
dc.description.references | Understanding Irrigation Water Test Results and Their Implications on Nursery and Greenhouse Crophttps://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1160&context=anr_reports | es_ES |
dc.description.references | Kim, H.-J., Kim, D.-W., Kim, W. K., Cho, W.-J., & Kang, C. I. (2017). PVC membrane-based portable ion analyzer for hydroponic and water monitoring. Computers and Electronics in Agriculture, 140, 374-385. doi:10.1016/j.compag.2017.06.015 | es_ES |
dc.description.references | (2017). Remote Sensing for Irrigation of Horticultural Crops. Horticulturae, 3(2), 40. doi:10.3390/horticulturae3020040 | es_ES |
dc.description.references | Suárez-Albela, M., Fraga-Lamas, P., Fernández-Caramés, T., Dapena, A., & González-López, M. (2016). Home Automation System Based on Intelligent Transducer Enablers. Sensors, 16(10), 1595. doi:10.3390/s16101595 | es_ES |
dc.description.references | Zhang, Q., Yang, X., Zhou, Y., Wang, L., & Guo, X. (2007). A wireless solution for greenhouse monitoring and control system based on ZigBee technology. Journal of Zhejiang University-SCIENCE A, 8(10), 1584-1587. doi:10.1631/jzus.2007.a1584 | es_ES |
dc.description.references | Gill, S. S., Chana, I., & Buyya, R. (2017). IoT Based Agriculture as a Cloud and Big Data Service. Journal of Organizational and End User Computing, 29(4), 1-23. doi:10.4018/joeuc.2017100101 | es_ES |
dc.description.references | Nordic Semiconductor, RF Specialist in Ultra-Low Power Wireless Communicationshttp://www.nordicsemi.com/eng/Products/2.4GHzRF/nRF24L01 | es_ES |
dc.description.references | Pawlowski, A., Guzman, J., Rodríguez, F., Berenguel, M., Sánchez, J., & Dormido, S. (2009). Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control. Sensors, 9(1), 232-252. doi:10.3390/s90100232 | es_ES |
dc.description.references | Li, X., Cheng, X., Yan, K., & Gong, P. (2010). A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network. Sensors, 10(10), 8963-8980. doi:10.3390/s101008963 | es_ES |