- -

Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cambra-Baseca, Carlos es_ES
dc.contributor.author Sendra, Sandra es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Lacuesta, Raquel es_ES
dc.date.accessioned 2020-09-05T03:30:31Z
dc.date.available 2020-09-05T03:30:31Z
dc.date.issued 2018-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149455
dc.description.abstract [EN] Improving the sustainability in agriculture is nowadays an important challenge. The automation of irrigation processes via low-cost sensors can to spread technological advances in a sector very influenced by economical costs. This article presents an auto-calibrated pH sensor able to detect and adjust the imbalances in the pH levels of the nutrient solution used in hydroponic agriculture. The sensor is composed by a pH probe and a set of micropumps that sequentially pour the different liquid solutions to maintain the sensor calibration and the water samples from the channels that contain the nutrient solution. To implement our architecture, we use an auto-calibrated pH sensor connected to a wireless node. Several nodes compose our wireless sensor networks (WSN) to control our greenhouse. The sensors periodically measure the pH level of each hydroponic support and send the information to a data base (DB) which stores and analyzes the data to warn farmers about the measures. The data can then be accessed through a user-friendly, web-based interface that can be accessed through the Internet by using desktop or mobile devices. This paper also shows the design and test bench for both the auto-calibrated pH sensor and the wireless network to check their correct operation. es_ES
dc.description.sponsorship The research leading to these results has received funding from "la Caixa" Foundation and Triptolemos Foundation. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Wireless sensor networks (WSNs) es_ES
dc.subject Internet of Things (IoT) es_ES
dc.subject Hydroponic agriculture es_ES
dc.subject Potential of hydrogen (pH) sensor es_ES
dc.subject Smart farming es_ES
dc.subject Precision agriculture es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s18051333 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//ERANETMED3-227 SMARTWATIR/EU/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Cambra-Baseca, C.; Sendra, S.; Lloret, J.; Lacuesta, R. (2018). Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming. Sensors. 18(5):1-16. https://doi.org/10.3390/s18051333 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s18051333 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 29693611 es_ES
dc.identifier.pmcid PMC5981803 es_ES
dc.relation.pasarela S\361211 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.description.references Salley, S. W., Sleezer, R. O., Bergstrom, R. M., Martin, P. H., & Kelly, E. F. (2016). A long-term analysis of the historical dry boundary for the Great Plains of North America: Implications of climatic variability and climatic change on temporal and spatial patterns in soil moisture. Geoderma, 274, 104-113. doi:10.1016/j.geoderma.2016.03.020 es_ES
dc.description.references Yang, H., Du, T., Qiu, R., Chen, J., Wang, F., Li, Y., … Kang, S. (2017). Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agricultural Water Management, 179, 193-204. doi:10.1016/j.agwat.2016.05.029 es_ES
dc.description.references Ferentinos, K. P., Katsoulas, N., Tzounis, A., Bartzanas, T., & Kittas, C. (2017). Wireless sensor networks for greenhouse climate and plant condition assessment. Biosystems Engineering, 153, 70-81. doi:10.1016/j.biosystemseng.2016.11.005 es_ES
dc.description.references Ibayashi, H., Kaneda, Y., Imahara, J., Oishi, N., Kuroda, M., & Mineno, H. (2016). A Reliable Wireless Control System for Tomato Hydroponics. Sensors, 16(5), 644. doi:10.3390/s16050644 es_ES
dc.description.references Ntinas, G. K., Neumair, M., Tsadilas, C. D., & Meyer, J. (2017). Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. Journal of Cleaner Production, 142, 3617-3626. doi:10.1016/j.jclepro.2016.10.106 es_ES
dc.description.references Europapress Newshttp://www.europapress.es/andalucia/almeria-00350/noticia-superficie-invernaderos-crece-105-ultimos-cuatro-anos-llegar-29596-hectareas-20150213102204.html es_ES
dc.description.references Treftz, C., & Omaye, S. T. (2016). Hydroponics: potential for augmenting sustainable food production in non-arable regions. Nutrition & Food Science, 46(5), 672-684. doi:10.1108/nfs-10-2015-0118 es_ES
dc.description.references De Anda, J., & Shear, H. (2017). Potential of Vertical Hydroponic Agriculture in Mexico. Sustainability, 9(1), 140. doi:10.3390/su9010140 es_ES
dc.description.references Croft, M. M., Hallett, S. G., & Marshall, M. I. (2017). Hydroponic production of vegetable Amaranth (Amaranthus cruentus) for improving nutritional security and economic viability in Kenya. Renewable Agriculture and Food Systems, 32(6), 552-561. doi:10.1017/s1742170516000478 es_ES
dc.description.references Ferrarezi, R. S., & Testezlaf, R. (2014). Performance of wick irrigation system using self-compensating troughs with substrates for lettuce production. Journal of Plant Nutrition, 39(1), 147-161. doi:10.1080/01904167.2014.983127 es_ES
dc.description.references Understanding Irrigation Water Test Results and Their Implications on Nursery and Greenhouse Crophttps://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1160&context=anr_reports es_ES
dc.description.references Kim, H.-J., Kim, D.-W., Kim, W. K., Cho, W.-J., & Kang, C. I. (2017). PVC membrane-based portable ion analyzer for hydroponic and water monitoring. Computers and Electronics in Agriculture, 140, 374-385. doi:10.1016/j.compag.2017.06.015 es_ES
dc.description.references (2017). Remote Sensing for Irrigation of Horticultural Crops. Horticulturae, 3(2), 40. doi:10.3390/horticulturae3020040 es_ES
dc.description.references Suárez-Albela, M., Fraga-Lamas, P., Fernández-Caramés, T., Dapena, A., & González-López, M. (2016). Home Automation System Based on Intelligent Transducer Enablers. Sensors, 16(10), 1595. doi:10.3390/s16101595 es_ES
dc.description.references Zhang, Q., Yang, X., Zhou, Y., Wang, L., & Guo, X. (2007). A wireless solution for greenhouse monitoring and control system based on ZigBee technology. Journal of Zhejiang University-SCIENCE A, 8(10), 1584-1587. doi:10.1631/jzus.2007.a1584 es_ES
dc.description.references Gill, S. S., Chana, I., & Buyya, R. (2017). IoT Based Agriculture as a Cloud and Big Data Service. Journal of Organizational and End User Computing, 29(4), 1-23. doi:10.4018/joeuc.2017100101 es_ES
dc.description.references Nordic Semiconductor, RF Specialist in Ultra-Low Power Wireless Communicationshttp://www.nordicsemi.com/eng/Products/2.4GHzRF/nRF24L01 es_ES
dc.description.references Pawlowski, A., Guzman, J., Rodríguez, F., Berenguel, M., Sánchez, J., & Dormido, S. (2009). Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control. Sensors, 9(1), 232-252. doi:10.3390/s90100232 es_ES
dc.description.references Li, X., Cheng, X., Yan, K., & Gong, P. (2010). A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network. Sensors, 10(10), 8963-8980. doi:10.3390/s101008963 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem