- -

The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Reyes Olalde, J.I. es_ES
dc.contributor.author Zuñiga, V. es_ES
dc.contributor.author Serwatowska, Joanna es_ES
dc.contributor.author Chávez Montes, R.A. es_ES
dc.contributor.author Lozano-Sotomayor, P. es_ES
dc.contributor.author Herrera-Ubaldo, H. es_ES
dc.contributor.author Gonzalez Aguilera, K.L. es_ES
dc.contributor.author Ballester Fuentes, Patricia es_ES
dc.contributor.author Ripoll Samper, Juan Jose es_ES
dc.contributor.author Ezquer Garín, Juan Ignacio es_ES
dc.contributor.author Paolo, D. es_ES
dc.contributor.author Heyl, A. es_ES
dc.contributor.author Colombo, Lucia es_ES
dc.contributor.author Yanofsky, Martin es_ES
dc.contributor.author FERRANDIZ MAESTRE, CRISTINA es_ES
dc.date.accessioned 2020-09-10T03:31:27Z
dc.date.available 2020-09-10T03:31:27Z
dc.date.issued 2017-04-07 es_ES
dc.identifier.issn 1553-7390 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149714
dc.description.abstract [EN] Fruits and seeds are the major food source on earth. Both derive from the gynoecium and, therefore, it is crucial to understand the mechanisms that guide the development of this organ of angiosperm species. In Arabidopsis, the gynoecium is composed of two congenitally fused carpels, where two domains: medial and lateral, can be distinguished. The medial domain includes the carpel margin meristem (CMM) that is key for the production of the internal tissues involved in fertilization, such as septum, ovules, and transmitting tract. Interestingly, the medial domain shows a high cytokinin signaling output, in contrast to the lateral domain, where it is hardly detected. While it is known that cytokinin provides meristematic properties, understanding on the mechanisms that underlie the cytokinin signaling pattern in the young gynoecium is lacking. Moreover, in other tissues, the cytokinin pathway is often connected to the auxin pathway, but we also lack knowledge about these connections in the young gynoecium. Our results reveal that cytokinin signaling, that can provide meristematic properties required for CMM activity and growth, is enabled by the transcription factor SPATULA (SPT) in the medial domain. Meanwhile, cytokinin signaling is confined to the medial domain by the cytokinin response repressor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFERASE 6 (AHP6), and perhaps by ARR16 (a type-A ARR) as well, both present in the lateral domains (presumptive valves) of the developing gynoecia. Moreover, SPT and cytokinin, probably together, promote the expression of the auxin biosynthetic gene TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and the gene encoding the auxin efflux transporter PIN-FORMED 3 (PIN3), likely creating auxin drainage important for gynoecium growth. This study provides novel insights in the spatiotemporal determination of the cytokinin signaling pattern and its connection to the auxin pathway in the young gynoecium. es_ES
dc.description.sponsorship IRO, VMZM, HHU and PLS were supported by the Mexican National Council of Science and Technology (CONACyT) with a PhD fellowship (210085, 210100, 243380 and 219883, respectively). Work in the SDF laboratory was financed by the CONACyT grants CB-2012-177739, FC-2015-2/1061, and INFR-2015-253504, and NMM by the CONACyT grant CB-2011-165986. SDF, CF and LC acknowledge the support of the European Union FP7-PEOPLE-2009-IRSES project EVOCODE (grant no. 247587) and H2020-MSCARISE-2015 project ExpoSEED (grant no. 691109). SDF also acknowledges the Marine Biological Laboratory (MBL) in Woods Hole for a scholarship for the Gene Regulatory Networks for Development Course 2015 (GERN2015). IE acknowledges the International European Fellowship-METMADS project and the Universita degli Studi di Milano (RTD-A; 2016). Research in the laboratory of MFY was funded by NSF (grant IOS-1121055), NIH (grant 1R01GM112976-01A1) and the Paul D. Saltman Endowed Chair in Science Education (MFY). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS Genetics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject B response regulators es_ES
dc.subject Arabidopsis gynoecium es_ES
dc.subject Shoot-Meristemless es_ES
dc.subject Carpel development es_ES
dc.subject Functional genomics es_ES
dc.subject Hormonal-Control es_ES
dc.subject Crabs-Claw es_ES
dc.subject Growth es_ES
dc.subject Differentiation es_ES
dc.subject Polarity es_ES
dc.title The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pgen.1006726 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/247587/EU/Evolutionary Conservation of Regulatory Network Controlling Flower Development/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1121055/US/Transcriptional and Post-transcriptional Regulation of Fruit Development/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/691109/EU/Exploring the molecular control of seed yield in crops/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//1R01GM112976-01A1/US/A novel genetic network controlling meristem initiation and stem cell patterning/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//210085/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//210100/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//243380/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//219883/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//CB-2012-177739/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//FC-2015-2%2F1061/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//INFR-2015-253504/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//CB-2011-165986/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Reyes Olalde, J.; Zuñiga, V.; Serwatowska, J.; Chávez Montes, R.; Lozano-Sotomayor, P.; Herrera-Ubaldo, H.; Gonzalez Aguilera, K.... (2017). The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genetics. 13(4):1-31. https://doi.org/10.1371/journal.pgen.1006726 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pgen.1006726 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 31 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 28388635 es_ES
dc.identifier.pmcid PMC5400277 es_ES
dc.relation.pasarela S\356255 es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Reyes-Olalde, J. I., Zuñiga-Mayo, V. M., Chávez Montes, R. A., Marsch-Martínez, N., & de Folter, S. (2013). Inside the gynoecium: at the carpel margin. Trends in Plant Science, 18(11), 644-655. doi:10.1016/j.tplants.2013.08.002 es_ES
dc.description.references Alvarez-Buylla, E. R., Benítez, M., Corvera-Poiré, A., Chaos Cador, Á., de Folter, S., Gamboa de Buen, A., … Sánchez-Corrales, Y. E. (2010). Flower Development. The Arabidopsis Book, 8, e0127. doi:10.1199/tab.0127 es_ES
dc.description.references Bowman, J. L., Baum, S. F., Eshed, Y., Putterill, J., & Alvarez, J. (1999). 4 Molecular Genetics of Gynoecium Development in Arabidopsis. Current Topics in Developmental Biology Volume 45, 155-205. doi:10.1016/s0070-2153(08)60316-6 es_ES
dc.description.references Chávez Montes, R. A., Herrera-Ubaldo, H., Serwatowska, J., & de Folter, S. (2015). Towards a comprehensive and dynamic gynoecium gene regulatory network. Current Plant Biology, 3-4, 3-12. doi:10.1016/j.cpb.2015.08.002 es_ES
dc.description.references Marsch-Martínez, N., & de Folter, S. (2016). Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology, 29, 104-114. doi:10.1016/j.pbi.2015.12.006 es_ES
dc.description.references Marsch-Martínez, N., Ramos-Cruz, D., Irepan Reyes-Olalde, J., Lozano-Sotomayor, P., Zúñiga-Mayo, V. M., & de Folter, S. (2012). The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. The Plant Journal, 72(2), 222-234. doi:10.1111/j.1365-313x.2012.05062.x es_ES
dc.description.references Zhao, Z., Andersen, S. U., Ljung, K., Dolezal, K., Miotk, A., Schultheiss, S. J., & Lohmann, J. U. (2010). Hormonal control of the shoot stem-cell niche. Nature, 465(7301), 1089-1092. doi:10.1038/nature09126 es_ES
dc.description.references Ashikari, M. (2005). Cytokinin Oxidase Regulates Rice Grain Production. Science, 309(5735), 741-745. doi:10.1126/science.1113373 es_ES
dc.description.references Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana. The Plant Cell, 23(1), 69-80. doi:10.1105/tpc.110.079079 es_ES
dc.description.references Hwang, I., Sheen, J., & Müller, B. (2012). Cytokinin Signaling Networks. Annual Review of Plant Biology, 63(1), 353-380. doi:10.1146/annurev-arplant-042811-105503 es_ES
dc.description.references Schaller, G. E., Bishopp, A., & Kieber, J. J. (2015). The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. The Plant Cell, 27(1), 44-63. doi:10.1105/tpc.114.133595 es_ES
dc.description.references Kieber, J. J., & Schaller, G. E. (2010). The Perception of Cytokinin: A Story 50 Years in the Making: Figure 1. Plant Physiology, 154(2), 487-492. doi:10.1104/pp.110.161596 es_ES
dc.description.references Long, J. A., Moan, E. I., Medford, J. I., & Barton, M. K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 379(6560), 66-69. doi:10.1038/379066a0 es_ES
dc.description.references Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., … Tsiantis, M. (2005). KNOX Action in Arabidopsis Is Mediated by Coordinate Regulation of Cytokinin and Gibberellin Activities. Current Biology, 15(17), 1560-1565. doi:10.1016/j.cub.2005.07.023 es_ES
dc.description.references Yanai, O., Shani, E., Dolezal, K., Tarkowski, P., Sablowski, R., Sandberg, G., … Ori, N. (2005). Arabidopsis KNOXI Proteins Activate Cytokinin Biosynthesis. Current Biology, 15(17), 1566-1571. doi:10.1016/j.cub.2005.07.060 es_ES
dc.description.references Scofield, S., Dewitte, W., Nieuwland, J., & Murray, J. A. H. (2013). The Arabidopsis homeobox gene SHOOT MERISTEMLESS has cellular and meristem-organisational roles with differential requirements for cytokinin and CYCD3 activity. The Plant Journal, 75(1), 53-66. doi:10.1111/tpj.12198 es_ES
dc.description.references Gordon, S. P., Chickarmane, V. S., Ohno, C., & Meyerowitz, E. M. (2009). Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences, 106(38), 16529-16534. doi:10.1073/pnas.0908122106 es_ES
dc.description.references Chickarmane, V. S., Gordon, S. P., Tarr, P. T., Heisler, M. G., & Meyerowitz, E. M. (2012). Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences, 109(10), 4002-4007. doi:10.1073/pnas.1200636109 es_ES
dc.description.references Leibfried, A., To, J. P. C., Busch, W., Stehling, S., Kehle, A., Demar, M., … Lohmann, J. U. (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 438(7071), 1172-1175. doi:10.1038/nature04270 es_ES
dc.description.references Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H., & Schmülling, T. (2003). Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity. The Plant Cell, 15(11), 2532-2550. doi:10.1105/tpc.014928 es_ES
dc.description.references Larsson, E., Franks, R. G., & Sundberg, E. (2013). Auxin and the Arabidopsis thaliana gynoecium. Journal of Experimental Botany, 64(9), 2619-2627. doi:10.1093/jxb/ert099 es_ES
dc.description.references Weijers, D., & Wagner, D. (2016). Transcriptional Responses to the Auxin Hormone. Annual Review of Plant Biology, 67(1), 539-574. doi:10.1146/annurev-arplant-043015-112122 es_ES
dc.description.references Robert, H. S., Crhak Khaitova, L., Mroue, S., & Benková, E. (2015). The importance of localized auxin production for morphogenesis of reproductive organs and embryos inArabidopsis. Journal of Experimental Botany, 66(16), 5029-5042. doi:10.1093/jxb/erv256 es_ES
dc.description.references Kuusk, S., Sohlberg, J. J., Magnus Eklund, D., & Sundberg, E. (2006). Functionally redundantSHIfamily genes regulate Arabidopsis gynoecium development in a dose-dependent manner. The Plant Journal, 47(1), 99-111. doi:10.1111/j.1365-313x.2006.02774.x es_ES
dc.description.references Sohlberg, J. J., Myrenås, M., Kuusk, S., Lagercrantz, U., Kowalczyk, M., Sandberg, G., & Sundberg, E. (2006). STY1regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. The Plant Journal, 47(1), 112-123. doi:10.1111/j.1365-313x.2006.02775.x es_ES
dc.description.references Ståldal, V., Sohlberg, J. J., Eklund, D. M., Ljung, K., & Sundberg, E. (2008). Auxin can act independently ofCRC,LUG,SEU,SPTandSTY1in style development but not apical-basal patterning of theArabidopsisgynoecium. New Phytologist, 180(4), 798-808. doi:10.1111/j.1469-8137.2008.02625.x es_ES
dc.description.references Van Gelderen, K., van Rongen, M., Liu, A., Otten, A., & Offringa, R. (2016). An INDEHISCENT-Controlled Auxin Response Specifies the Separation Layer in Early Arabidopsis Fruit. Molecular Plant, 9(6), 857-869. doi:10.1016/j.molp.2016.03.005 es_ES
dc.description.references José Ripoll, J., Bailey, L. J., Mai, Q.-A., Wu, S. L., Hon, C. T., Chapman, E. J., … Yanofsky, M. F. (2015). microRNA regulation of fruit growth. Nature Plants, 1(4). doi:10.1038/nplants.2015.36 es_ES
dc.description.references Larsson, E., Roberts, C. J., Claes, A. R., Franks, R. G., & Sundberg, E. (2014). Polar Auxin Transport Is Essential for Medial versus Lateral Tissue Specification and Vascular-Mediated Valve Outgrowth in Arabidopsis Gynoecia. Plant Physiology, 166(4), 1998-2012. doi:10.1104/pp.114.245951 es_ES
dc.description.references Nole-Wilson, S., Azhakanandam, S., & Franks, R. G. (2010). Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early Arabidopsis gynoecium development. Developmental Biology, 346(2), 181-195. doi:10.1016/j.ydbio.2010.07.016 es_ES
dc.description.references De Folter, S. (2016). Auxin Is Required for Valve Margin Patterning in Arabidopsis After All. Molecular Plant, 9(6), 768-770. doi:10.1016/j.molp.2016.05.005 es_ES
dc.description.references Moubayidin, L., & Østergaard, L. (2014). Dynamic Control of Auxin Distribution Imposes a Bilateral-to-Radial Symmetry Switch during Gynoecium Development. Current Biology, 24(22), 2743-2748. doi:10.1016/j.cub.2014.09.080 es_ES
dc.description.references Girin, T., Paicu, T., Stephenson, P., Fuentes, S., Körner, E., O’Brien, M., … Østergaard, L. (2011). INDEHISCENT and SPATULA Interact to Specify Carpel and Valve Margin Tissue and Thus Promote Seed Dispersal in Arabidopsis. The Plant Cell, 23(10), 3641-3653. doi:10.1105/tpc.111.090944 es_ES
dc.description.references Ioio, R. D., Nakamura, K., Moubayidin, L., Perilli, S., Taniguchi, M., Morita, M. T., … Sabatini, S. (2008). A Genetic Framework for the Control of Cell Division and Differentiation in the Root Meristem. Science, 322(5906), 1380-1384. doi:10.1126/science.1164147 es_ES
dc.description.references Bishopp, A., Help, H., El-Showk, S., Weijers, D., Scheres, B., Friml, J., … Helariutta, Y. (2011). A Mutually Inhibitory Interaction between Auxin and Cytokinin Specifies Vascular Pattern in Roots. Current Biology, 21(11), 917-926. doi:10.1016/j.cub.2011.04.017 es_ES
dc.description.references De Rybel, B., Adibi, M., Breda, A. S., Wendrich, J. R., Smit, M. E., Novák, O., … Weijers, D. (2014). Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science, 345(6197), 1255215. doi:10.1126/science.1255215 es_ES
dc.description.references Pernisova, M., Klima, P., Horak, J., Valkova, M., Malbeck, J., Soucek, P., … Hejatko, J. (2009). Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proceedings of the National Academy of Sciences, 106(9), 3609-3614. doi:10.1073/pnas.0811539106 es_ES
dc.description.references Cheng, Z. J., Wang, L., Sun, W., Zhang, Y., Zhou, C., Su, Y. H., … Zhang, X. S. (2012). Pattern of Auxin and Cytokinin Responses for Shoot Meristem Induction Results from the Regulation of Cytokinin Biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiology, 161(1), 240-251. doi:10.1104/pp.112.203166 es_ES
dc.description.references Alvarez, J., & Smyth, D. R. (2002). CRABS CLAWandSPATULAGenes Regulate Growth and Pattern Formation during Gynoecium Development inArabidopsis thaliana. International Journal of Plant Sciences, 163(1), 17-41. doi:10.1086/324178 es_ES
dc.description.references Groszmann, M., Bylstra, Y., Lampugnani, E. R., & Smyth, D. R. (2010). Regulation of tissue-specific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis. Journal of Experimental Botany, 61(5), 1495-1508. doi:10.1093/jxb/erq015 es_ES
dc.description.references Smyth, D. R., Bowman, J. L., & Meyerowitz, E. M. (1990). Early flower development in Arabidopsis. The Plant Cell, 2(8), 755-767. doi:10.1105/tpc.2.8.755 es_ES
dc.description.references Müller, B., & Sheen, J. (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 453(7198), 1094-1097. doi:10.1038/nature06943 es_ES
dc.description.references Argyros, R. D., Mathews, D. E., Chiang, Y.-H., Palmer, C. M., Thibault, D. M., Etheridge, N., … Schaller, G. E. (2008). Type B Response Regulators of Arabidopsis Play Key Roles in Cytokinin Signaling and Plant Development. The Plant Cell, 20(8), 2102-2116. doi:10.1105/tpc.108.059584 es_ES
dc.description.references Mason, M. G., Mathews, D. E., Argyros, D. A., Maxwell, B. B., Kieber, J. J., Alonso, J. M., … Schaller, G. E. (2005). Multiple Type-B Response Regulators Mediate Cytokinin Signal Transduction in Arabidopsis. The Plant Cell, 17(11), 3007-3018. doi:10.1105/tpc.105.035451 es_ES
dc.description.references Ishida, K., Yamashino, T., Yokoyama, A., & Mizuno, T. (2008). Three Type-B Response Regulators, ARR1, ARR10 and ARR12, Play Essential but Redundant Roles in Cytokinin Signal Transduction Throughout the Life Cycle of Arabidopsis thaliana. Plant and Cell Physiology, 49(1), 47-57. doi:10.1093/pcp/pcm165 es_ES
dc.description.references Yokoyama, A., Yamashino, T., Amano, Y.-I., Tajima, Y., Imamura, A., Sakakibara, H., & Mizuno, T. (2006). Type-B ARR Transcription Factors, ARR10 and ARR12, are Implicated in Cytokinin-Mediated Regulation of Protoxylem Differentiation in Roots of Arabidopsis thaliana. Plant and Cell Physiology, 48(1), 84-96. doi:10.1093/pcp/pcl040 es_ES
dc.description.references Schuster, C., Gaillochet, C., & Lohmann, J. U. (2015). Arabidopsis HECATE genes function in phytohormone control during gynoecium development. Development, 142(19), 3343-3350. doi:10.1242/dev.120444 es_ES
dc.description.references Toledo-Ortiz, G., Huq, E., & Quail, P. H. (2003). The Arabidopsis Basic/Helix-Loop-Helix Transcription Factor Family. The Plant Cell, 15(8), 1749-1770. doi:10.1105/tpc.013839 es_ES
dc.description.references Reymond, M. C., Brunoud, G., Chauvet, A., Martínez-Garcia, J. F., Martin-Magniette, M.-L., Monéger, F., & Scutt, C. P. (2012). A Light-Regulated Genetic Module Was Recruited to Carpel Development in Arabidopsis following a Structural Change to SPATULA. The Plant Cell, 24(7), 2812-2825. doi:10.1105/tpc.112.097915 es_ES
dc.description.references Ballester, P., Navarrete-Gómez, M., Carbonero, P., Oñate-Sánchez, L., & Ferrándiz, C. (2015). Leaf expansion in Arabidopsis is controlled by a TCP-NGA regulatory module likely conserved in distantly related species. Physiologia Plantarum, 155(1), 21-32. doi:10.1111/ppl.12327 es_ES
dc.description.references Hellens, R., Allan, A., Friel, E., Bolitho, K., Grafton, K., Templeton, M., … Laing, W. (2005). Plant Methods, 1(1), 13. doi:10.1186/1746-4811-1-13 es_ES
dc.description.references Makkena, S., & Lamb, R. S. (2013). The bHLH transcription factor SPATULA regulates root growth by controlling the size of the root meristem. BMC Plant Biology, 13(1), 1. doi:10.1186/1471-2229-13-1 es_ES
dc.description.references Stepanova, A. N., Robertson-Hoyt, J., Yun, J., Benavente, L. M., Xie, D.-Y., Doležal, K., … Alonso, J. M. (2008). TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development. Cell, 133(1), 177-191. doi:10.1016/j.cell.2008.01.047 es_ES
dc.description.references Bhargava, A., Clabaugh, I., To, J. P., Maxwell, B. B., Chiang, Y.-H., Schaller, G. E., … Kieber, J. J. (2013). Identification of Cytokinin-Responsive Genes Using Microarray Meta-Analysis and RNA-Seq in Arabidopsis. Plant Physiology, 162(1), 272-294. doi:10.1104/pp.113.217026 es_ES
dc.description.references Sakai, H., Aoyama, T., & Oka, A. (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. The Plant Journal, 24(6), 703-711. doi:10.1046/j.1365-313x.2000.00909.x es_ES
dc.description.references Sakai, H. (2001). ARR1, a Transcription Factor for Genes Immediately Responsive to Cytokinins. Science, 294(5546), 1519-1521. doi:10.1126/science.1065201 es_ES
dc.description.references Moubayidin, L., Di Mambro, R., Sozzani, R., Pacifici, E., Salvi, E., Terpstra, I., … Sabatini, S. (2013). Spatial Coordination between Stem Cell Activity and Cell Differentiation in the Root Meristem. Developmental Cell, 26(4), 405-415. doi:10.1016/j.devcel.2013.06.025 es_ES
dc.description.references Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., & Friml, J. (2003). Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell, 115(5), 591-602. doi:10.1016/s0092-8674(03)00924-3 es_ES
dc.description.references Okada, K., Ueda, J., Komaki, M. K., Bell, C. J., & Shimura, Y. (1991). Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. The Plant Cell, 677-684. doi:10.1105/tpc.3.7.677 es_ES
dc.description.references Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., … Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 433(7021), 39-44. doi:10.1038/nature03184 es_ES
dc.description.references Mahonen, A. P. (2006). Cytokinin Signaling and Its Inhibitor AHP6 Regulate Cell Fate During Vascular Development. Science, 311(5757), 94-98. doi:10.1126/science.1118875 es_ES
dc.description.references Besnard, F., Refahi, Y., Morin, V., Marteaux, B., Brunoud, G., Chambrier, P., … Vernoux, T. (2013). Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature, 505(7483), 417-421. doi:10.1038/nature12791 es_ES
dc.description.references Longabaugh, W. J. R., Davidson, E. H., & Bolouri, H. (2005). Computational representation of developmental genetic regulatory networks. Developmental Biology, 283(1), 1-16. doi:10.1016/j.ydbio.2005.04.023 es_ES
dc.description.references Faure, E., Peter, I. S., & Davidson, E. H. (2013). A New Software Package for Predictive Gene Regulatory Network Modeling and Redesign. Journal of Computational Biology, 20(6), 419-423. doi:10.1089/cmb.2012.0297 es_ES
dc.description.references Mangan, S., & Alon, U. (2003). Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences, 100(21), 11980-11985. doi:10.1073/pnas.2133841100 es_ES
dc.description.references Chen, Q., Liu, Y., Maere, S., Lee, E., Van Isterdael, G., Xie, Z., … Vanneste, S. (2015). A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications, 6(1). doi:10.1038/ncomms9821 es_ES
dc.description.references Qiu, K., Li, Z., Yang, Z., Chen, J., Wu, S., Zhu, X., … Zhou, X. (2015). EIN3 and ORE1 Accelerate Degreening during Ethylene-Mediated Leaf Senescence by Directly Activating Chlorophyll Catabolic Genes in Arabidopsis. PLOS Genetics, 11(7), e1005399. doi:10.1371/journal.pgen.1005399 es_ES
dc.description.references Seaton, D. D., Smith, R. W., Song, Y. H., MacGregor, D. R., Stewart, K., Steel, G., … Halliday, K. J. (2015). Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Molecular Systems Biology, 11(1), 776. doi:10.15252/msb.20145766 es_ES
dc.description.references Roeder, A. H. K., & Yanofsky, M. F. (2006). Fruit Development in Arabidopsis. The Arabidopsis Book, 4, e0075. doi:10.1199/tab.0075 es_ES
dc.description.references Marsch-Martínez, N., Reyes-Olalde, J. I., Ramos-Cruz, D., Lozano-Sotomayor, P., Zúñiga-Mayo, V. M., & de Folter, S. (2012). Hormones talking. Plant Signaling & Behavior, 7(12), 1698-1701. doi:10.4161/psb.22422 es_ES
dc.description.references Balanza, V., Navarrete, M., Trigueros, M., & Ferrandiz, C. (2006). Patterning the female side of Arabidopsis: the importance of hormones. Journal of Experimental Botany, 57(13), 3457-3469. doi:10.1093/jxb/erl188 es_ES
dc.description.references Kamiuchi, Y., Yamamoto, K., Furutani, M., Tasaka, M., & Aida, M. (2014). The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00165 es_ES
dc.description.references Scofield, S., Dewitte, W., & Murray, J. A. H. (2007). The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. The Plant Journal, 50(5), 767-781. doi:10.1111/j.1365-313x.2007.03095.x es_ES
dc.description.references Li, K., Yu, R., Fan, L.-M., Wei, N., Chen, H., & Deng, X. W. (2016). DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nature Communications, 7(1). doi:10.1038/ncomms11868 es_ES
dc.description.references Oh, E., Zhu, J.-Y., & Wang, Z.-Y. (2012). Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology, 14(8), 802-809. doi:10.1038/ncb2545 es_ES
dc.description.references Sharma, N., Xin, R., Kim, D.-H., Sung, S., Lange, T., & Huq, E. (2016). NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions inArabidopsis. Development, 143(4), 682-690. doi:10.1242/dev.128595 es_ES
dc.description.references Varaud, E., Brioudes, F., Szécsi, J., Leroux, J., Brown, S., Perrot-Rechenmann, C., & Bendahmane, M. (2011). AUXIN RESPONSE FACTOR8 Regulates Arabidopsis Petal Growth by Interacting with the bHLH Transcription Factor BIGPETALp. The Plant Cell, 23(3), 973-983. doi:10.1105/tpc.110.081653 es_ES
dc.description.references Savaldi-Goldstein, S., & Chory, J. (2008). Growth coordination and the shoot epidermis. Current Opinion in Plant Biology, 11(1), 42-48. doi:10.1016/j.pbi.2007.10.009 es_ES
dc.description.references Schuster, C., Gaillochet, C., Medzihradszky, A., Busch, W., Daum, G., Krebs, M., … Lohmann, J. U. (2014). A Regulatory Framework for Shoot Stem Cell Control Integrating Metabolic, Transcriptional, and Phytohormone Signals. Developmental Cell, 28(4), 438-449. doi:10.1016/j.devcel.2014.01.013 es_ES
dc.description.references Gremski, K., Ditta, G., & Yanofsky, M. F. (2007). The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development, 134(20), 3593-3601. doi:10.1242/dev.011510 es_ES
dc.description.references Lucero, L. E., Uberti-Manassero, N. G., Arce, A. L., Colombatti, F., Alemano, S. G., & Gonzalez, D. H. (2015). TCP15 modulates cytokinin and auxin responses during gynoecium development in Arabidopsis. The Plant Journal, 84(2), 267-282. doi:10.1111/tpj.12992 es_ES
dc.description.references Nibau, C., Di Stilio, V. S., Wu, H., & Cheung, A. Y. (2010). Arabidopsis and Tobacco SUPERMAN regulate hormone signalling and mediate cell proliferation and differentiation. Journal of Experimental Botany, 62(3), 949-961. doi:10.1093/jxb/erq325 es_ES
dc.description.references Eshed, Y., Baum, S. F., & Bowman, J. L. (1999). Distinct Mechanisms Promote Polarity Establishment in Carpels of Arabidopsis. Cell, 99(2), 199-209. doi:10.1016/s0092-8674(00)81651-7 es_ES
dc.description.references Otsuga, D., DeGuzman, B., Prigge, M. J., Drews, G. N., & Clark, S. E. (2001). REVOLUTA regulates meristem initiation at lateral positions. The Plant Journal, 25(2), 223-236. doi:10.1046/j.1365-313x.2001.00959.x es_ES
dc.description.references Eshed, Y., Baum, S. F., Perea, J. V., & Bowman, J. L. (2001). Establishment of polarity in lateral organs of plants. Current Biology, 11(16), 1251-1260. doi:10.1016/s0960-9822(01)00392-x es_ES
dc.description.references Kerstetter, R. A., Bollman, K., Taylor, R. A., Bomblies, K., & Poethig, R. S. (2001). KANADI regulates organ polarity in Arabidopsis. Nature, 411(6838), 706-709. doi:10.1038/35079629 es_ES
dc.description.references Bowman, J. L., & Floyd, S. K. (2008). Patterning and Polarity in Seed Plant Shoots. Annual Review of Plant Biology, 59(1), 67-88. doi:10.1146/annurev.arplant.57.032905.105356 es_ES
dc.description.references Pires, H. R., Monfared, M. M., Shemyakina, E. A., & Fletcher, J. C. (2014). ULTRAPETALAtrxG Genes Interact withKANADITranscription Factor Genes to RegulateArabidopsisGynoecium Patterning. The Plant Cell, 26(11), 4345-4361. doi:10.1105/tpc.114.131250 es_ES
dc.description.references Endress, P. K., & Igersheim, A. (2000). Gynoecium Structure and Evolution in Basal Angiosperms. International Journal of Plant Sciences, 161(S6), S211-S213. doi:10.1086/317572 es_ES
dc.description.references Pils, B., & Heyl, A. (2009). Unraveling the Evolution of Cytokinin Signaling. Plant Physiology, 151(2), 782-791. doi:10.1104/pp.109.139188 es_ES
dc.description.references Bennett, T., Brockington, S. F., Rothfels, C., Graham, S. W., Stevenson, D., Kutchan, T., … Harrison, C. J. (2014). Paralogous Radiations of PIN Proteins with Multiple Origins of Noncanonical PIN Structure. Molecular Biology and Evolution, 31(8), 2042-2060. doi:10.1093/molbev/msu147 es_ES
dc.description.references Tivendale, N. D., Ross, J. J., & Cohen, J. D. (2014). The shifting paradigms of auxin biosynthesis. Trends in Plant Science, 19(1), 44-51. doi:10.1016/j.tplants.2013.09.012 es_ES
dc.description.references Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 es_ES
dc.description.references González-Reig, S., Ripoll, J. J., Vera, A., Yanofsky, M. F., & Martínez-Laborda, A. (2012). Antagonistic Gene Activities Determine the Formation of Pattern Elements along the Mediolateral Axis of the Arabidopsis Fruit. PLoS Genetics, 8(11), e1003020. doi:10.1371/journal.pgen.1003020 es_ES
dc.description.references Matias-Hernandez, L., Battaglia, R., Galbiati, F., Rubes, M., Eichenberger, C., Grossniklaus, U., … Colombo, L. (2010). VERDANDI Is a Direct Target of the MADS Domain Ovule Identity Complex and Affects Embryo Sac Differentiation in Arabidopsis. The Plant Cell, 22(6), 1702-1715. doi:10.1105/tpc.109.068627 es_ES
dc.description.references Penfield, S., Josse, E.-M., Kannangara, R., Gilday, A. D., Halliday, K. J., & Graham, I. A. (2005). Cold and Light Control Seed Germination through the bHLH Transcription Factor SPATULA. Current Biology, 15(22), 1998-2006. doi:10.1016/j.cub.2005.11.010 es_ES
dc.description.references Earley, K. W., Haag, J. R., Pontes, O., Opper, K., Juehne, T., Song, K., & Pikaard, C. S. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. The Plant Journal, 45(4), 616-629. doi:10.1111/j.1365-313x.2005.02617.x es_ES
dc.description.references Marín-de la Rosa, N., Pfeiffer, A., Hill, K., Locascio, A., Bhalerao, R. P., Miskolczi, P., … Alabadí, D. (2015). Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins. PLOS Genetics, 11(7), e1005337. doi:10.1371/journal.pgen.1005337 es_ES
dc.description.references Espley, R. V., Brendolise, C., Chagné, D., Kutty-Amma, S., Green, S., Volz, R., … Allan, A. C. (2009). Multiple Repeats of a Promoter Segment Causes Transcription Factor Autoregulation in Red Apples. The Plant Cell, 21(1), 168-183. doi:10.1105/tpc.108.059329 es_ES
dc.description.references Reyes-Olalde, J. I., Marsch-Martínez, N., & de Folter, S. (2015). Imaging early stages of the female reproductive structure of arabidopsis by confocal laser scanning microscopy. Developmental Dynamics, 244(10), 1286-1290. doi:10.1002/dvdy.24301 es_ES
dc.description.references Marsch-Martínez, N., Zúñiga-Mayo, V. M., Herrera-Ubaldo, H., Ouwerkerk, P. B. F., Pablo-Villa, J., Lozano-Sotomayor, P., … de Folter, S. (2014). The NTT transcription factor promotes replum development in Arabidopsis fruits. The Plant Journal, 80(1), 69-81. doi:10.1111/tpj.12617 es_ES
dc.description.references Zúñiga-Mayo, V. M., Marsch-Martínez, N., & de Folter, S. (2012). JAIBA, a class-II HD-ZIP transcription factor involved in the regulation of meristematic activity, and important for correct gynoecium and fruit development in Arabidopsis. The Plant Journal, 71(2), 314-326. doi:10.1111/j.1365-313x.2012.04990.x es_ES
dc.description.references Dortay, H., Mehnert, N., Bürkle, L., Schmülling, T., & Heyl, A. (2006). Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana. FEBS Journal, 273(20), 4631-4644. doi:10.1111/j.1742-4658.2006.05467.x es_ES
dc.description.references De Folter, S., & Immink, R. G. H. (2011). Yeast Protein–Protein Interaction Assays and Screens. Plant Transcription Factors, 145-165. doi:10.1007/978-1-61779-154-3_8 es_ES
dc.description.references Goehler, H., Lalowski, M., Stelzl, U., Waelter, S., Stroedicke, M., Worm, U., … Wanker, E. E. (2004). A Protein Interaction Network Links GIT1, an Enhancer of Huntingtin Aggregation, to Huntington’s Disease. Molecular Cell, 15(6), 853-865. doi:10.1016/j.molcel.2004.09.016 es_ES
dc.description.references Belda-Palazón, B., Ruiz, L., Martí, E., Tárraga, S., Tiburcio, A. F., Culiáñez, F., … Ferrando, A. (2012). Aminopropyltransferases Involved in Polyamine Biosynthesis Localize Preferentially in the Nucleus of Plant Cells. PLoS ONE, 7(10), e46907. doi:10.1371/journal.pone.0046907 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem