- -

Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes

Mostrar el registro completo del ítem

Correia, DM.; Gamiz Gonzalez, MA.; Botelho, G.; Vidaurre, A.; Gómez Ribelles, JL.; Lanceros-Mendez, S.; Sencadas, V. (2014). Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes. Journal of Thermal Analysis and Calorimetry. 117(1):123-130. https://doi.org/10.1007/s10973-014-3707-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150041

Ficheros en el ítem

Metadatos del ítem

Título: Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes
Autor: Correia, D. M. Gamiz Gonzalez, Mª Amparo Botelho, G. Vidaurre, Ana Gómez Ribelles, José Luís Lanceros-Mendez, S. Sencadas, V.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Thermal degradation of as-electrospun chitosan membranes and samples subsequently treated with ethanol and cross-linked with glutaraldehyde has been studied by thermogravimetry (TG) coupled with an infrared ...[+]
Palabras clave: Chitosan , Electrospun membranes , Thermal degradation kinetics , Activation energy , Cross-linking
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Thermal Analysis and Calorimetry. (issn: 1388-6150 )
DOI: 10.1007/s10973-014-3707-5
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10973-014-3707-5
Código del Proyecto:
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F82411%2F2011/PT/SCAFFOLDS TRIDIMENSIONAIS BASEADOS EM NNANOFIBRAS ELECTROACTIVAS BIODEGRADÁVEIS PARA APLICAÇÃO EM ENGENHARIA DE TECIDOS/
...[+]
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F82411%2F2011/PT/SCAFFOLDS TRIDIMENSIONAIS BASEADOS EM NNANOFIBRAS ELECTROACTIVAS BIODEGRADÁVEIS PARA APLICAÇÃO EM ENGENHARIA DE TECIDOS/
info:eu-repo/grantAgreement/COST//MP1301/EU/New Generation Biomimetic and Customized Implants for Bone Engineering/
info:eu-repo/grantAgreement/COST//MP1206/EU/Electrospun nano-fibres for bio inspired composite materials and innovative industrial applications/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/
info:eu-repo/grantAgreement/COST//MP1003/EU/European Scientific Network for Artificial Muscles (ESNAM)/
info:eu-repo/grantAgreement/FCT//PEst-C%2FFIS%2FUI607%2F2011/
info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/
info:eu-repo/grantAgreement/FCT//PEst-C%2FQUI%2FUI0686%2F2011/
info:eu-repo/grantAgreement/MICINN//BES-2011-044740/ES/BES-2011-044740/
info:eu-repo/grantAgreement/FCT//NORTE-07-0124-FEDER-000037/
[-]
Agradecimientos:
This work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST-C/FIS/UI607/2011 and PEST-C/QUI/UIO686/2011. The ...[+]
Tipo: Artículo

References

Nam YS, Park WH, Ihm D, Hudson SM. Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydr Polym. 2010;80(1):291–5. doi: 10.1016/j.carbpol.2009.11.030 .

Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release. 2003;89(2):151–65. doi: 10.1016/s0168-3659(03)00126-3 .

Geng X, Kwon O-H, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials. 2005;26(27):5427–32. doi: 10.1016/j.biomaterials.2005.01.066 . [+]
Nam YS, Park WH, Ihm D, Hudson SM. Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydr Polym. 2010;80(1):291–5. doi: 10.1016/j.carbpol.2009.11.030 .

Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release. 2003;89(2):151–65. doi: 10.1016/s0168-3659(03)00126-3 .

Geng X, Kwon O-H, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials. 2005;26(27):5427–32. doi: 10.1016/j.biomaterials.2005.01.066 .

Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36(8):981–1014. doi: 10.1016/j.progpolymsci.2011.02.001 .

Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34(7):641–78. doi: 10.1016/j.progpolymsci.2009.04.001 .

Schiffman JD, Schauer CL. Cross-linking chitosan nanofibers. Biomacromolecules. 2007;8(2):594–601. doi: 10.1021/bm060804s .

Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv. 2010;28(1):142–50. doi: 10.1016/j.biotechadv.2009.11.001 .

Beachley V, Wen X. Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci. 2010;35(7):868–92. doi: 10.1016/j.progpolymsci.2010.03.003 .

Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–47. doi: 10.1016/j.biotechadv.2010.01.004 .

Ohkawa K, Cha DI, Kim H, Nishida A, Yamamoto H. Electrospinning of chitosan. Macromol Rapid Commun. 2004;25(18):1600–5. doi: 10.1002/marc.200400253 .

Ohkawa K, Minato K-I, Kumagai G, Hayashi S, Yamamoto H. Chitosan nanofiber. Biomacromolecules. 2006;7(11):3291–4. doi: 10.1021/bm0604395 .

Sencadas V, Correia DM, Areias A, Botelho G, Fonseca AM, Neves IC, et al. Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydr Polym. 2012;87(2):1295–301. doi: 10.1016/j.carbpol.2011.09.017 .

Sangsanoh P, Supaphol P. Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules. 2006;7(10):2710–4. doi: 10.1021/bm060286l .

Sencadas V, Correia DM, Ribeiro C, Moreira S, Botelho G, Ribelles JLG, et al. Physical–chemical properties of cross-linked chitosan electrospun fiber mats. Polym Test. 2012;31(8):1062–9.

Julkapli NM, Ahmad Z, Akil HM. X-ray diffraction studies of cross linked chitosan with different cross linking agents for waste water treatment application. In: Saat AAH, JMH H, Othman SJM, MRI A, Idris FM, Mham A, editors. Neutron and X-ray scattering advancing materials research. AIP Conference Proceedings; 2009, p. 106–11.

Wanjun T, Cunxin W, Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan. Polym Degrad Stab. 2005;87(3):389–94. doi: 10.1016/j.polymdegradstab.2004.08.006 .

Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR. Thermal analysis of chitosan based networks. Carbohydr Polym. 2005;62(2):97–103. doi: 10.1016/j.carbpol.2005.02.022 .

Taboada E, Cabrera G, Jimenez R, Cardenas G. A kinetic study of the thermal degradation of chitosan-metal complexes. J Appl Polym Sci. 2009;114(4):2043–52. doi: 10.1002/app.30796 .

Hong P-Z, Li S-D, Ou C-Y, Li C-P, Yang L, Zhang C-H. Thermogravimetric analysis of chitosan. J Appl Polym Sci. 2007;105(2):547–51. doi: 10.1002/app.25920 .

Novamatrix. Protasan—chitosan biopolymer. In: Novamatrix, editor; 2011. http://www.novamatrix.biz .

Zeng L, Qin C, Wang L, Li W. Volatile compounds formed from the pyrolysis of chitosan. Carbohydr Polym. 2011;83(4):1553–7. doi: 10.1016/j.carbpol.2010.10.007 .

Pereira F, Silva Agostini D, Job A, González E. Thermal studies of chitin–chitosan derivatives. J Therm Anal Calorim. 2013;114(1):321–7. doi: 10.1007/s10973-012-2835-z .

Julkapli N, Akil H, Ahmad Z. Thermal properties of 4,4-oxydiphathalic anhydride chitosan filled chitosan bio-composites. J Therm Anal Calorim. 2012;107(1):365–76. doi: 10.1007/s10973-011-1864-3 .

Scheinmann F. An introduction to spectroscopic methods for the identification of organic compounds. Oxford: Pergamon Press; 1979.

Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta. 2003;396(1–2):153–66. doi: 10.1016/S0040-6031(02)00523-3 .

Kagarise RE. Infrared spectrum of trifluoroacetic acid vapor. J Chem Phys. 1957;27(2):519–22.

Fuson N, Josien M-L, Jones EA, Lawson JR. Infrared and Raman spectroscopy studies of light and heavy trifluoroacetic acids. J Chem Phys. 1952;20(10):1627–34.

Botelho G, Lanceros-Mendez S, Gonçalves AM, Sencadas V, Rocha JG. Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the β-phase. J Non-Cryst Solids. 2008;354(1):72–8. doi: 10.1016/j.jnoncrysol.2007.07.012 .

Kissinger HE. Variation of the peak temperature with heating rate in differential thermal analysis. J Res Natl Inst Standards Technol. 1956;57:217–21.

Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 2002;29(11):1702–6. doi: 10.1021/ac60131a045 .

Israelachvili JN. Intermolecular and surface forces: revised (third edition). Amesterdam: Elsevier Science; 2011.

Sanderson RT. Polar covalence. India: Academic Press; 1983.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem