- -

Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide-graphene oxide composites

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide-graphene oxide composites

Show simple item record

Files in this item

dc.contributor.author Abellán Sáez, Gonzalo es_ES
dc.contributor.author Latorre Sánchez, Marcos es_ES
dc.contributor.author Fornes Seguí, Vicente es_ES
dc.contributor.author Ribera, Antonio es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2020-09-18T03:34:04Z
dc.date.available 2020-09-18T03:34:04Z
dc.date.issued 2012 es_ES
dc.identifier.issn 1364-548X es_ES
dc.identifier.uri http://hdl.handle.net/10251/150294
dc.description.abstract [EN] Thermal treatment of the hybrid material formed by the spontaneous precipitation of graphene oxide and Ni,Mn layered double hydroxide leads to the segregation of nickel metal nanoparticles (Ni NPs) and the decomposition of graphene to CO2. Increasing the temperature increases the Ni NP size and results in the complete disappearance of graphene. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economia y Competitividad with FEDER confinancing (Project Cosolider-Ingenio in Molecular Nanoscience CSD2007-00010 and CTQ2011-26507) and the Generalitat Valenciana (Prometeo Program). es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation MINECO/CSD2007-00010 es_ES
dc.relation MINECO/CTQ2011-26507 es_ES
dc.relation.ispartof Chemical Communications (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide-graphene oxide composites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c2cc35750j es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Abellán Sáez, G.; Latorre Sánchez, M.; Fornes Seguí, V.; Ribera, A.; García Gómez, H. (2012). Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide-graphene oxide composites. Chemical Communications (Online). 48(93):11416-11418. https://doi.org/10.1039/c2cc35750j es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c2cc35750j es_ES
dc.description.upvformatpinicio 11416 es_ES
dc.description.upvformatpfin 11418 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 48 es_ES
dc.description.issue 93 es_ES
dc.identifier.pmid 23086405 es_ES
dc.relation.pasarela S\240194 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.relation.references Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849 es_ES
dc.relation.references Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41(2), 666-686. doi:10.1039/c1cs15078b es_ES
dc.relation.references Wang, H., Casalongue, H. S., Liang, Y., & Dai, H. (2010). Ni(OH)2Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of the American Chemical Society, 132(21), 7472-7477. doi:10.1021/ja102267j es_ES
dc.relation.references Zhao, X., Xu, S., Wang, L., Duan, X., & Zhang, F. (2010). Exchange-biased NiFe2O4/NiO nanocomposites derived from NiFe-layered double hydroxides as a single precursor. Nano Research, 3(3), 200-210. doi:10.1007/s12274-010-1023-3 es_ES
dc.relation.references Zhao, X., Zhang, F., Xu, S., Evans, D. G., & Duan, X. (2010). From Layered Double Hydroxides to ZnO-based Mixed Metal Oxides by Thermal Decomposition: Transformation Mechanism and UV-Blocking Properties of the Product. Chemistry of Materials, 22(13), 3933-3942. doi:10.1021/cm100383d es_ES
dc.relation.references Das, B., Reddy, M. V., Krishnamoorthi, C., Tripathy, S., Mahendiran, R., Rao, G. V. S., & Chowdari, B. V. R. (2009). Carbothermal synthesis, spectral and magnetic characterization and Li-cyclability of the Mo-cluster compounds, LiYMo3O8 and Mn2Mo3O8. Electrochimica Acta, 54(12), 3360-3373. doi:10.1016/j.electacta.2008.12.049 es_ES
dc.relation.references Das, B., Reddy, M. V., Subba Rao, G. V., & Chowdari, B. V. R. (2007). Synthesis of Mo-cluster compound, LiHoMo3O8 by carbothermal reduction and its reactivity towards Li. Journal of Solid State Electrochemistry, 12(7-8), 953-959. doi:10.1007/s10008-007-0451-9 es_ES
dc.relation.references Reddy, M. V., Subba Rao, G. V., & Chowdari, B. V. R. (2010). Long-term cycling studies on 4V-cathode, lithium vanadium fluorophosphate. Journal of Power Sources, 195(17), 5768-5774. doi:10.1016/j.jpowsour.2010.03.032 es_ES
dc.relation.references Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11(2), 173-301. doi:10.1016/0920-5861(91)80068-k es_ES
dc.relation.references Leroux, F., & Taviot-Guého, C. (2005). Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies. Journal of Materials Chemistry, 15(35-36), 3628. doi:10.1039/b505014f es_ES
dc.relation.references Abellán, G., Coronado, E., Martí-Gastaldo, C., Ribera, A., & Sánchez-Royo, J. F. (2012). Layered double hydroxide (LDH)–organic hybrids as precursors for low-temperature chemical synthesis of carbon nanoforms. Chemical Science, 3(5), 1481. doi:10.1039/c2sc01064j es_ES
dc.relation.references Latorre-Sanchez, M., Atienzar, P., Abellán, G., Puche, M., Fornés, V., Ribera, A., & García, H. (2012). The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 50(2), 518-525. doi:10.1016/j.carbon.2011.09.007 es_ES
dc.relation.references Wang, J., Fan, G., Wang, H., & Li, F. (2011). Synthesis, Characterization, and Catalytic Performance of Highly Dispersed Supported Nickel Catalysts from Ni–Al Layered Double Hydroxides. Industrial & Engineering Chemistry Research, 50(24), 13717-13726. doi:10.1021/ie2015087 es_ES
dc.relation.references Kooli, F., Rives, V., & Jones, W. (1997). Reduction of Ni2+−Al3+and Cu2+−Al3+Layered Double Hydroxides to Metallic Ni0and Cu0via Polyol Treatment. Chemistry of Materials, 9(10), 2231-2235. doi:10.1021/cm970391p es_ES
dc.relation.references Nethravathi, C., Rajamathi, J. T., Ravishankar, N., Shivakumara, C., & Rajamathi, M. (2008). Graphite Oxide-Intercalated Anionic Clay and Its Decomposition to Graphene−Inorganic Material Nanocomposites. Langmuir, 24(15), 8240-8244. doi:10.1021/la8000027 es_ES
dc.relation.references Kovanda, F., Grygar, T., & Dorničák, V. (2003). Thermal behaviour of Ni–Mn layered double hydroxide and characterization of formed oxides. Solid State Sciences, 5(7), 1019-1026. doi:10.1016/s1293-2558(03)00129-8 es_ES
dc.relation.references Johnston-Peck, A. C., Wang, J., & Tracy, J. B. (2009). Synthesis and Structural and Magnetic Characterization of Ni(Core)/NiO(Shell) Nanoparticles. ACS Nano, 3(5), 1077-1084. doi:10.1021/nn900019x es_ES
dc.relation.references Cordente, N., Respaud, M., Senocq, F., Casanove, M.-J., Amiens, C., & Chaudret, B. (2001). Synthesis and Magnetic Properties of Nickel Nanorods. Nano Letters, 1(10), 565-568. doi:10.1021/nl0100522 es_ES
dc.relation.references Jiao, J., Seraphin, S., Wang, X., & Withers, J. C. (1996). Preparation and properties of ferromagnetic carbon‐coated Fe, Co, and Ni nanoparticles. Journal of Applied Physics, 80(1), 103-108. doi:10.1063/1.362765 es_ES
dc.relation.references Wang, X., & Li, Y. (2002). Selected-Control Hydrothermal Synthesis of α- and β-MnO2Single Crystal Nanowires. Journal of the American Chemical Society, 124(12), 2880-2881. doi:10.1021/ja0177105 es_ES
dc.relation.references Ahmad, T., Ramanujachary, K. V., Lofland, S. E., & Ganguli, A. K. (2004). Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). Journal of Materials Chemistry, 14(23), 3406. doi:10.1039/b409010a es_ES
dc.relation.references Chen, S., Zhu, J., Wu, X., Han, Q., & Wang, X. (2010). Graphene Oxide−MnO2 Nanocomposites for Supercapacitors. ACS Nano, 4(5), 2822-2830. doi:10.1021/nn901311t es_ES
dc.relation.references Zhong, K., Xia, X., Zhang, B., Li, H., Wang, Z., & Chen, L. (2010). MnO powder as anode active materials for lithium ion batteries. Journal of Power Sources, 195(10), 3300-3308. doi:10.1016/j.jpowsour.2009.11.133 es_ES


This item appears in the following Collection(s)

Show simple item record