- -

Dissipative operators and additive perturbations in locally convex spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dissipative operators and additive perturbations in locally convex spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Albanese, Angela A. es_ES
dc.contributor.author Jornet Casanova, David es_ES
dc.date.accessioned 2020-09-18T03:34:23Z
dc.date.available 2020-09-18T03:34:23Z
dc.date.issued 2016-06 es_ES
dc.identifier.issn 0025-584X es_ES
dc.identifier.uri http://hdl.handle.net/10251/150301
dc.description "This is the peer reviewed version of the following article: Albanese, Angela A., and David Jornet. 2015. Dissipative Operators and Additive Perturbations in Locally Convex Spaces. Mathematische Nachrichten 289 (8 9). Wiley: 920 49. doi:10.1002/mana.201500150, which has been published in final form at https://doi.org/10.1002/mana.201500150. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] Let (A, D(A)) be a densely defined operator on a Banach space X. Characterizations of when (A, D(A)) generates a C-0-semigroup on X are known. The famous result of Lumer and Phillips states that it is so if and only if (A, D(A)) is dissipative and rg(lambda I - A) subset of X is dense in X for some lambda > 0. There exists also a rich amount of Banach space results concerning perturbations of dissipative operators. In a recent paper Tyran-Kaminska provides perturbation criteria of dissipative operators in terms of ergodic properties. These results, and others, are shown to remain valid in the setting of general non-normable locally convex spaces. Applications of the results to concrete examples of operators on function spaces are also presented. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim es_ES
dc.description.sponsorship The research of the second author was partially supported by MINECO of Spain, Project MTM2013-43540-P, by Programa de Apoyo a la Investigacion y Desarrollo de la UPV, PAID-06-12 and by Generalitat Valenciana ACOMP/2015/186. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematische Nachrichten es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Equicontinuous semigroup es_ES
dc.subject Dissipative operator es_ES
dc.subject Additive perturbation es_ES
dc.subject (Uniformly) mean ergodic operator es_ES
dc.subject Quasi-Montel operator es_ES
dc.subject Locally convex space es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Dissipative operators and additive perturbations in locally convex spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mana.201500150 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-43540-P/ES/METODOS DEL ANALISIS FUNCIONAL Y TEORIA DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-12/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2015%2F186/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Albanese, AA.; Jornet Casanova, D. (2016). Dissipative operators and additive perturbations in locally convex spaces. Mathematische Nachrichten. 289(8-9):920-949. https://doi.org/10.1002/mana.201500150 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mana.201500150 es_ES
dc.description.upvformatpinicio 920 es_ES
dc.description.upvformatpfin 949 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 289 es_ES
dc.description.issue 8-9 es_ES
dc.relation.pasarela S\321037 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Albanese, A. A., Bonet, J., & Ricker, W. J. (2010). <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroups and mean ergodic operators in a class of Fréchet spaces. Journal of Mathematical Analysis and Applications, 365(1), 142-157. doi:10.1016/j.jmaa.2009.10.014 es_ES
dc.description.references Albanese, A. A., Bonet, J., & Ricker, W. J. (2011). Mean ergodic semigroups of operators. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 106(2), 299-319. doi:10.1007/s13398-011-0054-2 es_ES
dc.description.references Albanese, A. A., Bonet, J., & Ricker, W. J. (2013). Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaestiones Mathematicae, 36(2), 253-290. doi:10.2989/16073606.2013.779978 es_ES
dc.description.references Albanese, A. A., Bonet, J., & Ricker, W. J. (2013). Convergence of arithmetic means of operators in Fréchet spaces. Journal of Mathematical Analysis and Applications, 401(1), 160-173. doi:10.1016/j.jmaa.2012.11.060 es_ES
dc.description.references Albanese, A. A., Bonet, J., & Ricker, W. J. (2014). Uniform mean ergodicity of $C_0$-semigroups\newline in a class of Fréchet spaces. Functiones et Approximatio Commentarii Mathematici, 50(2), 307-349. doi:10.7169/facm/2014.50.2.8 es_ES
dc.description.references Domański, P., & Langenbruch, M. (2011). On the abstract Cauchy problem for operators in locally convex spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 106(2), 247-273. doi:10.1007/s13398-011-0052-4 es_ES
dc.description.references Frerick, L., Jordá, E., Kalmes, T., & Wengenroth, J. (2014). Strongly continuous semigroups on some Fréchet spaces. Journal of Mathematical Analysis and Applications, 412(1), 121-124. doi:10.1016/j.jmaa.2013.10.053 es_ES
dc.description.references B. Jacob S.-A. Wegner Asymptotics of solution equations beyond Banach spaces Semigroup Forum es_ES
dc.description.references Jacob, B., Wegner, S.-A., & Wintermayr, J. (2015). Desch-Schappacher perturbation of one-parameter semigroups on locally convex spaces. Mathematische Nachrichten, 288(8-9), 925-934. doi:10.1002/mana.201400116 es_ES
dc.description.references Köthe, G. (1983). Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. doi:10.1007/978-3-642-64988-2 es_ES
dc.description.references Köthe, G. (1979). Topological Vector Spaces II. Grundlehren der mathematischen Wissenschaften. doi:10.1007/978-1-4684-9409-9 es_ES
dc.description.references KOMATSU, H. (1964). Semi-groups of operators in locally convex spaces. Journal of the Mathematical Society of Japan, 16(3), 230-262. doi:10.2969/jmsj/01630230 es_ES
dc.description.references Kōmura, T. (1968). Semigroups of operators in locally convex spaces. Journal of Functional Analysis, 2(3), 258-296. doi:10.1016/0022-1236(68)90008-6 es_ES
dc.description.references Lumer, G., & Phillips, R. S. (1961). Dissipative operators in a Banach space. Pacific Journal of Mathematics, 11(2), 679-698. doi:10.2140/pjm.1961.11.679 es_ES
dc.description.references Miyadera, I. (1959). Semi-groups of operators in Fréchet space amd applications to partial differential equations. Tohoku Mathematical Journal, 11(2), 162-183. doi:10.2748/tmj/1178244580 es_ES
dc.description.references Moscatelli, V. B. (1980). Fréchet Spaces without continuous Norms and without Bases. Bulletin of the London Mathematical Society, 12(1), 63-66. doi:10.1112/blms/12.1.63 es_ES
dc.description.references Tyran-Kamińska, M. (2009). Ergodic theorems and perturbations of contraction semigroups. Studia Mathematica, 195(2), 147-155. doi:10.4064/sm195-2-4 es_ES
dc.description.references S.-A. Wegner The growth bound for strongly continuous semigroups on Fréchet spaces Proc. Edinb. Math. Soc. (2) (to appear) 10.1017/S0013091515000310 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem