- -

Improving integrability via absolute summability: a general version of Diestel s Theorem

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Improving integrability via absolute summability: a general version of Diestel s Theorem

Show full item record

Pellegrino, D.; Rueda, P.; Sánchez Pérez, EA. (2016). Improving integrability via absolute summability: a general version of Diestel s Theorem. Positivity. 20(2):369-383. https://doi.org/10.1007/s11117-015-0361-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150310

Files in this item

Item Metadata

Title: Improving integrability via absolute summability: a general version of Diestel s Theorem
Author: Pellegrino, D. Rueda, P. Sánchez Pérez, Enrique Alfonso
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] A classical result by J. Diestel establishes that the composition of a summing operator with a (strongly measurable) Pettis integrable function gives a Bochner integrable function. In this paper we show that a much ...[+]
Subjects: Absolutely summing operator , Absolutely continuous operator , Pettis integrable function , Bochner integrable function
Copyrigths: Reserva de todos los derechos
Source:
Positivity. (issn: 1385-1292 )
DOI: 10.1007/s11117-015-0361-5
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11117-015-0361-5
Thanks:
D. Pellegrino acknowledges with thanks the support of CNPq Grant 401735/2013-3 (Brazil). P. Rueda acknowledges with thanks the support of the Ministerio de Economia y Competitividad (Spain) MTM2011-22417. E.A. Sanchez Perez ...[+]
Type: Artículo

References

Botelho, G., Pellegrino, D., Rueda, P.: A unified Pietsch domination theorem. J. Math. Anal. Appl. 365(1), 269–276 (2010)

Defant, A., Floret, K.: Tensor norms and operator ideals. North-Holland, Amsterdam (1992)

Diestel, J.: An elementary characterization of absolutely summing operators. Math. Ann. 196, 101–105 (1972) [+]
Botelho, G., Pellegrino, D., Rueda, P.: A unified Pietsch domination theorem. J. Math. Anal. Appl. 365(1), 269–276 (2010)

Defant, A., Floret, K.: Tensor norms and operator ideals. North-Holland, Amsterdam (1992)

Diestel, J.: An elementary characterization of absolutely summing operators. Math. Ann. 196, 101–105 (1972)

Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators. Cambridge University Press, Cambridge (1995)

Farmer, J., Johnson, W.B.: Lipschitz p-summing operators. Proc. Amer. Math. Soc. 137, 2989–2995 (2009)

Jarchow, H.: Localy convex, spaces. Teubner, Stuttgart (1981)

López Molina, J.A., Sánchez Pérez, E.A.: Ideales de operadores absolutamente continuos, Ciencias Exactas, Físicas y Naturales, Madrid. Rev. Real Acad. 87, 349–378 (1993)

López Molina, J.A., Sánchez Pérez, E.A.: The associated tensor norm to $$(q, p)$$ ( q , p ) -absolutely summing operators on $$C(K)$$ C ( K ) -spaces. Czec. Math. J. 47(4), 627–631 (1997)

López, J.A., Molina, Sánchez-Pérez, E.A.: On operator ideals related to $$(p,\sigma )$$ ( p , σ ) -absolutely continuous operator. Studia Math. 131(8), 25–40 (2000)

Matter, U.: Absolute continuous operators and super-reflexivity. Math. Nachr. 130, 193–216 (1987)

Pellegrino, D., Santos, J.: A general Pietsch domination theorem. J. Math. Anal. Appl. 375(1), 371–374 (2011)

Pellegrino, D., Santos, J., Seoane-Sepúlveda, J.B.: Some techniques on nonlinear analysis and applications. Adv. Math. 229, 1235–1265 (2012)

Pietsch, A.: Operator Ideals. Deutsch. Verlag Wiss., Berlin, 1978; North-Holland, Amsterdam-London-New York-Tokyo (1980)

Pisier, G.: Factorization of operators through $$L_{p\infty }$$ L p ∞ or $$ L_{p1}$$ L p 1 and noncommutative generalizations. Math. Ann. 276(1), 105–136 (1986)

Rodríguez, J.: Absolutely summing operators and integration of vector-valued functions. J. Math. Anal. Appl. 316(2), 579–600 (2006)

[-]

This item appears in the following Collection(s)

Show full item record