- -

Preparation and Characterization of Extruded Nanocomposite Based on Polycarbonate/Butadiene-Acrylonitrile-Styrene Blend Filled with Multiwalled Carbon Nanotubes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preparation and Characterization of Extruded Nanocomposite Based on Polycarbonate/Butadiene-Acrylonitrile-Styrene Blend Filled with Multiwalled Carbon Nanotubes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marcin, Wegrzyn es_ES
dc.contributor.author Benedito, Adolfo es_ES
dc.contributor.author Giménez Torres, Enrique es_ES
dc.date.accessioned 2020-09-18T03:35:41Z
dc.date.available 2020-09-18T03:35:41Z
dc.date.issued 2014-05-15 es_ES
dc.identifier.issn 0021-8995 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150339
dc.description "This is the peer reviewed version of the following article: Marcin, W., Benedito, A., & Gimenez, E. (2014). Preparation and characterization of extruded nanocomposite based on polycarbonate/butadiene‐acrylonitrile‐styrene blend filled with multiwalled carbon nanotubes. Journal of Applied Polymer Science, 131(10)., which has been published in final form at https://doi.org/10.1002/app.40271. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] Nanocomposites of polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) with multiwall carbon nanotubes (MWCNT) prepared by masterbatch dilution are investigated in this work. Melt compounding with twin screw extruder is followed by complete characterization of morphology, rheological-, mechanical-, and thermal-properties of the nanocomposites. Light-transmission- and scanning electron microscopy shows the preferential location of MWCNT in the PC. Nevertheless, relatively good dispersion in the whole matrix is achieved, what is corroborated with the specific mechanical energy. The study of viscoelastic properties of PC/ABSMWCNT shows the fluid solid transition below 0.5 wt % MWCNT. Beyond this point the continuous nanofiller network is formed in the matrix promoting the reinforcement. Addition of 0.5 wt % MWCNT reduces ductility of PC/ABS and enhances Young s modulus by about 30% and yield stress by about 20%. Moreover, theoretical values of stiffness calculated within this work agree with the experimental data. Electrical conductivity, showing percolation at 2.0 wt % MWCNT, are influenced by processing temperature. es_ES
dc.description.sponsorship This work is funded by the European Community's Seventh Framework Program (FP7-PEOPLE-ITN-2008) within the CONTACT project Marie Curie Fellowship under grant number 238363. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Applied Polymer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Blends es_ES
dc.subject Nanotubes es_ES
dc.subject Graphene and fullerenes es_ES
dc.subject Mechanical properties es_ES
dc.subject Theory and modeling es_ES
dc.subject Extrusion es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Preparation and Characterization of Extruded Nanocomposite Based on Polycarbonate/Butadiene-Acrylonitrile-Styrene Blend Filled with Multiwalled Carbon Nanotubes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/app.40271 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/238363/EU/Marie Curie Initial Training Network for the tailored supply-chain development of the mechanical and electrical properties of CNT-filled composites/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Marcin, W.; Benedito, A.; Giménez Torres, E. (2014). Preparation and Characterization of Extruded Nanocomposite Based on Polycarbonate/Butadiene-Acrylonitrile-Styrene Blend Filled with Multiwalled Carbon Nanotubes. Journal of Applied Polymer Science. 131(10). https://doi.org/10.1002/app.40271 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/app.40271 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 131 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\259882 es_ES
dc.description.references Göldel, A., & Pötschke, P. (2011). Carbon nanotubes in multiphase polymer blends. Polymer–Carbon Nanotube Composites, 587-620. doi:10.1533/9780857091390.2.587 es_ES
dc.description.references Sathyanarayana, S., Wegrzyn, M., Olowojoba, G., Benedito, A., Gimenez, E., Huebner, C., & Henning, F. (2013). Multiwalled carbon nanotubes incorporated into a miscible blend of poly(phenylenether)/polystyrene – Processing and characterization. Express Polymer Letters, 7(7), 621-635. doi:10.3144/expresspolymlett.2013.59 es_ES
dc.description.references Xiong, Z.-Y., Wang, L., Sun, Y., Guo, Z.-X., & Yu, J. (2013). Migration of MWCNTs during melt preparation of ABS/PC/MWCNT conductive composites via PC/MWCNT masterbatch approach. Polymer, 54(1), 447-455. doi:10.1016/j.polymer.2012.11.044 es_ES
dc.description.references Sun, Y., Guo, Z.-X., & Yu, J. (2010). Effect of ABS Rubber Content on the Localization of MWCNTs in PC/ABS Blends and Electrical Resistivity of the Composites. Macromolecular Materials and Engineering, 295(3), 263-268. doi:10.1002/mame.200900242 es_ES
dc.description.references Yang, L., Liu, F., Xia, H., Qian, X., Shen, K., & Zhang, J. (2011). Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon, 49(10), 3274-3283. doi:10.1016/j.carbon.2011.03.054 es_ES
dc.description.references Pötschke, P., Dudkin, S. M., & Alig, I. (2003). Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer, 44(17), 5023-5030. doi:10.1016/s0032-3861(03)00451-8 es_ES
dc.description.references Pötschke, P., Abdel-Goad, M., Alig, I., Dudkin, S., & Lellinger, D. (2004). Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer, 45(26), 8863-8870. doi:10.1016/j.polymer.2004.10.040 es_ES
dc.description.references Villmow, T., Kretzschmar, B., & Pötschke, P. (2010). Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Composites Science and Technology, 70(14), 2045-2055. doi:10.1016/j.compscitech.2010.07.021 es_ES
dc.description.references Villmow, T., Pegel, S., Pötschke, P., & Wagenknecht, U. (2008). Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Composites Science and Technology, 68(3-4), 777-789. doi:10.1016/j.compscitech.2007.08.031 es_ES
dc.description.references Duong, H. M., Yamamoto, N., Bui, K., Papavassiliou, D. V., Maruyama, S., & Wardle, B. L. (2010). Morphology Effects on Nonisotropic Thermal Conduction of Aligned Single-Walled and Multi-Walled Carbon Nanotubes in Polymer Nanocomposites. The Journal of Physical Chemistry C, 114(19), 8851-8860. doi:10.1021/jp102138c es_ES
dc.description.references Sathyanarayana, S., Olowojoba, G., Weiss, P., Caglar, B., Pataki, B., Mikonsaari, I., … Henning, F. (2012). Compounding of MWCNTs with PS in a Twin-Screw Extruder with Varying Process Parameters: Morphology, Interfacial Behavior, Thermal Stability, Rheology, and Volume Resistivity. Macromolecular Materials and Engineering, 298(1), 89-105. doi:10.1002/mame.201200018 es_ES
dc.description.references Vega, J. F., Martínez-Salazar, J., Trujillo, M., Arnal, M. L., Müller, A. J., Bredeau, S., & Dubois, P. (2009). Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules, 42(13), 4719-4727. doi:10.1021/ma900645f es_ES
dc.description.references Alig, I., Lellinger, D., Dudkin, S. M., & Pötschke, P. (2007). Conductivity spectroscopy on melt processed polypropylene–multiwalled carbon nanotube composites: Recovery after shear and crystallization. Polymer, 48(4), 1020-1029. doi:10.1016/j.polymer.2006.12.035 es_ES
dc.description.references Hill, D. E., Lin, Y., Rao, A. M., Allard, L. F., & Sun, Y.-P. (2002). Functionalization of Carbon Nanotubes with Polystyrene. Macromolecules, 35(25), 9466-9471. doi:10.1021/ma020855r es_ES
dc.description.references Alig, I., Lellinger, D., Engel, M., Skipa, T., & Pötschke, P. (2008). Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments. Polymer, 49(7), 1902-1909. doi:10.1016/j.polymer.2008.01.073 es_ES
dc.description.references Krause, B., Villmow, T., Boldt, R., Mende, M., Petzold, G., & Pötschke, P. (2011). Influence of dry grinding in a ball mill on the length of multiwalled carbon nanotubes and their dispersion and percolation behaviour in melt mixed polycarbonate composites. Composites Science and Technology, 71(8), 1145-1153. doi:10.1016/j.compscitech.2011.04.004 es_ES
dc.description.references Krause, B., Pötschke, P., & Häußler, L. (2009). Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Composites Science and Technology, 69(10), 1505-1515. doi:10.1016/j.compscitech.2008.07.007 es_ES
dc.description.references Nuriel, S., Liu, L., Barber, A. H., & Wagner, H. D. (2005). Direct measurement of multiwall nanotube surface tension. Chemical Physics Letters, 404(4-6), 263-266. doi:10.1016/j.cplett.2005.01.072 es_ES
dc.description.references Barber, A. H., Cohen, S. R., & Wagner, H. D. (2004). Static and Dynamic Wetting Measurements of Single Carbon Nanotubes. Physical Review Letters, 92(18). doi:10.1103/physrevlett.92.186103 es_ES
dc.description.references Sonnenfeld, A., Roth, C., Dimitrova, Z., Spillmann, A., & von Rohr, P. R. (2009). Plasma Enhanced Chemical Vapor Deposition on Particulate Solid-State Materials for Improved Powder Processing. Plasma Processes and Polymers, 6(S1), S860-S863. doi:10.1002/ppap.200932202 es_ES
dc.description.references Bokobza, L., & Zhang, J. (2012). Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polymer Letters, 6(7), 601-608. doi:10.3144/expresspolymlett.2012.63 es_ES
dc.description.references Deng, L., Eichhorn, S. J., Kao, C.-C., & Young, R. J. (2011). The Effective Young’s Modulus of Carbon Nanotubes in Composites. ACS Applied Materials & Interfaces, 3(2), 433-440. doi:10.1021/am1010145 es_ES
dc.description.references Cooper, C. A., Young, R. J., & Halsall, M. (2001). Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 32(3-4), 401-411. doi:10.1016/s1359-835x(00)00107-x es_ES
dc.description.references Yan, X., Itoh, T., Kitahama, Y., Suzuki, T., Sato, H., Miyake, T., & Ozaki, Y. (2012). A Raman Spectroscopy Study on Single-Wall Carbon Nanotube/Polystyrene Nanocomposites: Mechanical Compression Transferred from the Polymer to Single-Wall Carbon Nanotubes. The Journal of Physical Chemistry C, 116(33), 17897-17903. doi:10.1021/jp303509g es_ES
dc.description.references Schartel, B., Braun, U., Knoll, U., Bartholmai, M., Goering, H., Neubert, D., & Pötschke, P. (2007). Mechanical, thermal, and fire behavior of bisphenol a polycarbonate/multiwall carbon nanotube nanocomposites. Polymer Engineering & Science, 48(1), 149-158. doi:10.1002/pen.20932 es_ES
dc.description.references Su, S. P., Xu, Y. H., China, P. R., & Wilkie, C. A. (2011). Thermal degradation of polymer–carbon nanotube composites. Polymer–Carbon Nanotube Composites, 482-510. doi:10.1533/9780857091390.2.482 es_ES
dc.description.references Abdel-Goad, M., & Pötschke, P. (2005). Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites. Journal of Non-Newtonian Fluid Mechanics, 128(1), 2-6. doi:10.1016/j.jnnfm.2005.01.008 es_ES
dc.description.references Du, F., Scogna, R. C., Zhou, W., Brand, S., Fischer, J. E., & Winey, K. I. (2004). Nanotube Networks in Polymer Nanocomposites:  Rheology and Electrical Conductivity. Macromolecules, 37(24), 9048-9055. doi:10.1021/ma049164g es_ES
dc.description.references Abbasi, S., Carreau, P. J., & Derdouri, A. (2010). Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties. Polymer, 51(4), 922-935. doi:10.1016/j.polymer.2009.12.041 es_ES
dc.description.references Affdl, J. C. H., & Kardos, J. L. (1976). The Halpin-Tsai equations: A review. Polymer Engineering and Science, 16(5), 344-352. doi:10.1002/pen.760160512 es_ES
dc.description.references Jiang, Z., Hornsby, P., McCool, R., & Murphy, A. (2011). Mechanical and thermal properties of polyphenylene sulfide/multiwalled carbon nanotube composites. Journal of Applied Polymer Science, 123(5), 2676-2683. doi:10.1002/app.34669 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem