Mostrar el registro sencillo del ítem
dc.contributor.author | Marcin, Wegrzyn | es_ES |
dc.contributor.author | Benedito, Adolfo | es_ES |
dc.contributor.author | Giménez Torres, Enrique | es_ES |
dc.date.accessioned | 2020-09-18T03:35:41Z | |
dc.date.available | 2020-09-18T03:35:41Z | |
dc.date.issued | 2014-05-15 | es_ES |
dc.identifier.issn | 0021-8995 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150339 | |
dc.description | "This is the peer reviewed version of the following article: Marcin, W., Benedito, A., & Gimenez, E. (2014). Preparation and characterization of extruded nanocomposite based on polycarbonate/butadiene‐acrylonitrile‐styrene blend filled with multiwalled carbon nanotubes. Journal of Applied Polymer Science, 131(10)., which has been published in final form at https://doi.org/10.1002/app.40271. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." | es_ES |
dc.description.abstract | [EN] Nanocomposites of polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) with multiwall carbon nanotubes (MWCNT) prepared by masterbatch dilution are investigated in this work. Melt compounding with twin screw extruder is followed by complete characterization of morphology, rheological-, mechanical-, and thermal-properties of the nanocomposites. Light-transmission- and scanning electron microscopy shows the preferential location of MWCNT in the PC. Nevertheless, relatively good dispersion in the whole matrix is achieved, what is corroborated with the specific mechanical energy. The study of viscoelastic properties of PC/ABSMWCNT shows the fluid solid transition below 0.5 wt % MWCNT. Beyond this point the continuous nanofiller network is formed in the matrix promoting the reinforcement. Addition of 0.5 wt % MWCNT reduces ductility of PC/ABS and enhances Young s modulus by about 30% and yield stress by about 20%. Moreover, theoretical values of stiffness calculated within this work agree with the experimental data. Electrical conductivity, showing percolation at 2.0 wt % MWCNT, are influenced by processing temperature. | es_ES |
dc.description.sponsorship | This work is funded by the European Community's Seventh Framework Program (FP7-PEOPLE-ITN-2008) within the CONTACT project Marie Curie Fellowship under grant number 238363. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of Applied Polymer Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Blends | es_ES |
dc.subject | Nanotubes | es_ES |
dc.subject | Graphene and fullerenes | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Theory and modeling | es_ES |
dc.subject | Extrusion | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Preparation and Characterization of Extruded Nanocomposite Based on Polycarbonate/Butadiene-Acrylonitrile-Styrene Blend Filled with Multiwalled Carbon Nanotubes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/app.40271 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/238363/EU/Marie Curie Initial Training Network for the tailored supply-chain development of the mechanical and electrical properties of CNT-filled composites/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Marcin, W.; Benedito, A.; Giménez Torres, E. (2014). Preparation and Characterization of Extruded Nanocomposite Based on Polycarbonate/Butadiene-Acrylonitrile-Styrene Blend Filled with Multiwalled Carbon Nanotubes. Journal of Applied Polymer Science. 131(10). https://doi.org/10.1002/app.40271 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/app.40271 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 131 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\259882 | es_ES |
dc.description.references | Göldel, A., & Pötschke, P. (2011). Carbon nanotubes in multiphase polymer blends. Polymer–Carbon Nanotube Composites, 587-620. doi:10.1533/9780857091390.2.587 | es_ES |
dc.description.references | Sathyanarayana, S., Wegrzyn, M., Olowojoba, G., Benedito, A., Gimenez, E., Huebner, C., & Henning, F. (2013). Multiwalled carbon nanotubes incorporated into a miscible blend of poly(phenylenether)/polystyrene – Processing and characterization. Express Polymer Letters, 7(7), 621-635. doi:10.3144/expresspolymlett.2013.59 | es_ES |
dc.description.references | Xiong, Z.-Y., Wang, L., Sun, Y., Guo, Z.-X., & Yu, J. (2013). Migration of MWCNTs during melt preparation of ABS/PC/MWCNT conductive composites via PC/MWCNT masterbatch approach. Polymer, 54(1), 447-455. doi:10.1016/j.polymer.2012.11.044 | es_ES |
dc.description.references | Sun, Y., Guo, Z.-X., & Yu, J. (2010). Effect of ABS Rubber Content on the Localization of MWCNTs in PC/ABS Blends and Electrical Resistivity of the Composites. Macromolecular Materials and Engineering, 295(3), 263-268. doi:10.1002/mame.200900242 | es_ES |
dc.description.references | Yang, L., Liu, F., Xia, H., Qian, X., Shen, K., & Zhang, J. (2011). Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon, 49(10), 3274-3283. doi:10.1016/j.carbon.2011.03.054 | es_ES |
dc.description.references | Pötschke, P., Dudkin, S. M., & Alig, I. (2003). Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer, 44(17), 5023-5030. doi:10.1016/s0032-3861(03)00451-8 | es_ES |
dc.description.references | Pötschke, P., Abdel-Goad, M., Alig, I., Dudkin, S., & Lellinger, D. (2004). Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer, 45(26), 8863-8870. doi:10.1016/j.polymer.2004.10.040 | es_ES |
dc.description.references | Villmow, T., Kretzschmar, B., & Pötschke, P. (2010). Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Composites Science and Technology, 70(14), 2045-2055. doi:10.1016/j.compscitech.2010.07.021 | es_ES |
dc.description.references | Villmow, T., Pegel, S., Pötschke, P., & Wagenknecht, U. (2008). Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Composites Science and Technology, 68(3-4), 777-789. doi:10.1016/j.compscitech.2007.08.031 | es_ES |
dc.description.references | Duong, H. M., Yamamoto, N., Bui, K., Papavassiliou, D. V., Maruyama, S., & Wardle, B. L. (2010). Morphology Effects on Nonisotropic Thermal Conduction of Aligned Single-Walled and Multi-Walled Carbon Nanotubes in Polymer Nanocomposites. The Journal of Physical Chemistry C, 114(19), 8851-8860. doi:10.1021/jp102138c | es_ES |
dc.description.references | Sathyanarayana, S., Olowojoba, G., Weiss, P., Caglar, B., Pataki, B., Mikonsaari, I., … Henning, F. (2012). Compounding of MWCNTs with PS in a Twin-Screw Extruder with Varying Process Parameters: Morphology, Interfacial Behavior, Thermal Stability, Rheology, and Volume Resistivity. Macromolecular Materials and Engineering, 298(1), 89-105. doi:10.1002/mame.201200018 | es_ES |
dc.description.references | Vega, J. F., Martínez-Salazar, J., Trujillo, M., Arnal, M. L., Müller, A. J., Bredeau, S., & Dubois, P. (2009). Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules, 42(13), 4719-4727. doi:10.1021/ma900645f | es_ES |
dc.description.references | Alig, I., Lellinger, D., Dudkin, S. M., & Pötschke, P. (2007). Conductivity spectroscopy on melt processed polypropylene–multiwalled carbon nanotube composites: Recovery after shear and crystallization. Polymer, 48(4), 1020-1029. doi:10.1016/j.polymer.2006.12.035 | es_ES |
dc.description.references | Hill, D. E., Lin, Y., Rao, A. M., Allard, L. F., & Sun, Y.-P. (2002). Functionalization of Carbon Nanotubes with Polystyrene. Macromolecules, 35(25), 9466-9471. doi:10.1021/ma020855r | es_ES |
dc.description.references | Alig, I., Lellinger, D., Engel, M., Skipa, T., & Pötschke, P. (2008). Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments. Polymer, 49(7), 1902-1909. doi:10.1016/j.polymer.2008.01.073 | es_ES |
dc.description.references | Krause, B., Villmow, T., Boldt, R., Mende, M., Petzold, G., & Pötschke, P. (2011). Influence of dry grinding in a ball mill on the length of multiwalled carbon nanotubes and their dispersion and percolation behaviour in melt mixed polycarbonate composites. Composites Science and Technology, 71(8), 1145-1153. doi:10.1016/j.compscitech.2011.04.004 | es_ES |
dc.description.references | Krause, B., Pötschke, P., & Häußler, L. (2009). Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Composites Science and Technology, 69(10), 1505-1515. doi:10.1016/j.compscitech.2008.07.007 | es_ES |
dc.description.references | Nuriel, S., Liu, L., Barber, A. H., & Wagner, H. D. (2005). Direct measurement of multiwall nanotube surface tension. Chemical Physics Letters, 404(4-6), 263-266. doi:10.1016/j.cplett.2005.01.072 | es_ES |
dc.description.references | Barber, A. H., Cohen, S. R., & Wagner, H. D. (2004). Static and Dynamic Wetting Measurements of Single Carbon Nanotubes. Physical Review Letters, 92(18). doi:10.1103/physrevlett.92.186103 | es_ES |
dc.description.references | Sonnenfeld, A., Roth, C., Dimitrova, Z., Spillmann, A., & von Rohr, P. R. (2009). Plasma Enhanced Chemical Vapor Deposition on Particulate Solid-State Materials for Improved Powder Processing. Plasma Processes and Polymers, 6(S1), S860-S863. doi:10.1002/ppap.200932202 | es_ES |
dc.description.references | Bokobza, L., & Zhang, J. (2012). Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polymer Letters, 6(7), 601-608. doi:10.3144/expresspolymlett.2012.63 | es_ES |
dc.description.references | Deng, L., Eichhorn, S. J., Kao, C.-C., & Young, R. J. (2011). The Effective Young’s Modulus of Carbon Nanotubes in Composites. ACS Applied Materials & Interfaces, 3(2), 433-440. doi:10.1021/am1010145 | es_ES |
dc.description.references | Cooper, C. A., Young, R. J., & Halsall, M. (2001). Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 32(3-4), 401-411. doi:10.1016/s1359-835x(00)00107-x | es_ES |
dc.description.references | Yan, X., Itoh, T., Kitahama, Y., Suzuki, T., Sato, H., Miyake, T., & Ozaki, Y. (2012). A Raman Spectroscopy Study on Single-Wall Carbon Nanotube/Polystyrene Nanocomposites: Mechanical Compression Transferred from the Polymer to Single-Wall Carbon Nanotubes. The Journal of Physical Chemistry C, 116(33), 17897-17903. doi:10.1021/jp303509g | es_ES |
dc.description.references | Schartel, B., Braun, U., Knoll, U., Bartholmai, M., Goering, H., Neubert, D., & Pötschke, P. (2007). Mechanical, thermal, and fire behavior of bisphenol a polycarbonate/multiwall carbon nanotube nanocomposites. Polymer Engineering & Science, 48(1), 149-158. doi:10.1002/pen.20932 | es_ES |
dc.description.references | Su, S. P., Xu, Y. H., China, P. R., & Wilkie, C. A. (2011). Thermal degradation of polymer–carbon nanotube composites. Polymer–Carbon Nanotube Composites, 482-510. doi:10.1533/9780857091390.2.482 | es_ES |
dc.description.references | Abdel-Goad, M., & Pötschke, P. (2005). Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites. Journal of Non-Newtonian Fluid Mechanics, 128(1), 2-6. doi:10.1016/j.jnnfm.2005.01.008 | es_ES |
dc.description.references | Du, F., Scogna, R. C., Zhou, W., Brand, S., Fischer, J. E., & Winey, K. I. (2004). Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity. Macromolecules, 37(24), 9048-9055. doi:10.1021/ma049164g | es_ES |
dc.description.references | Abbasi, S., Carreau, P. J., & Derdouri, A. (2010). Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties. Polymer, 51(4), 922-935. doi:10.1016/j.polymer.2009.12.041 | es_ES |
dc.description.references | Affdl, J. C. H., & Kardos, J. L. (1976). The Halpin-Tsai equations: A review. Polymer Engineering and Science, 16(5), 344-352. doi:10.1002/pen.760160512 | es_ES |
dc.description.references | Jiang, Z., Hornsby, P., McCool, R., & Murphy, A. (2011). Mechanical and thermal properties of polyphenylene sulfide/multiwalled carbon nanotube composites. Journal of Applied Polymer Science, 123(5), 2676-2683. doi:10.1002/app.34669 | es_ES |