- -

Preparation and Characterization of Extruded Nanocomposite Based on Polycarbonate/Butadiene-Acrylonitrile-Styrene Blend Filled with Multiwalled Carbon Nanotubes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preparation and Characterization of Extruded Nanocomposite Based on Polycarbonate/Butadiene-Acrylonitrile-Styrene Blend Filled with Multiwalled Carbon Nanotubes

Mostrar el registro completo del ítem

Marcin, W.; Benedito, A.; Giménez Torres, E. (2014). Preparation and Characterization of Extruded Nanocomposite Based on Polycarbonate/Butadiene-Acrylonitrile-Styrene Blend Filled with Multiwalled Carbon Nanotubes. Journal of Applied Polymer Science. 131(10). https://doi.org/10.1002/app.40271

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150339

Ficheros en el ítem

Metadatos del ítem

Título: Preparation and Characterization of Extruded Nanocomposite Based on Polycarbonate/Butadiene-Acrylonitrile-Styrene Blend Filled with Multiwalled Carbon Nanotubes
Autor: Marcin, Wegrzyn Benedito, Adolfo Giménez Torres, Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Nanocomposites of polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) with multiwall carbon nanotubes (MWCNT) prepared by masterbatch dilution are investigated in this work. Melt compounding with twin screw extruder ...[+]
Palabras clave: Blends , Nanotubes , Graphene and fullerenes , Mechanical properties , Theory and modeling , Extrusion
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Applied Polymer Science. (issn: 0021-8995 )
DOI: 10.1002/app.40271
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/app.40271
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/238363/EU/Marie Curie Initial Training Network for the tailored supply-chain development of the mechanical and electrical properties of CNT-filled composites/
Descripción: "This is the peer reviewed version of the following article: Marcin, W., Benedito, A., & Gimenez, E. (2014). Preparation and characterization of extruded nanocomposite based on polycarbonate/butadiene‐acrylonitrile‐styrene blend filled with multiwalled carbon nanotubes. Journal of Applied Polymer Science, 131(10)., which has been published in final form at https://doi.org/10.1002/app.40271. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
This work is funded by the European Community's Seventh Framework Program (FP7-PEOPLE-ITN-2008) within the CONTACT project Marie Curie Fellowship under grant number 238363.
Tipo: Artículo

References

Göldel, A., & Pötschke, P. (2011). Carbon nanotubes in multiphase polymer blends. Polymer–Carbon Nanotube Composites, 587-620. doi:10.1533/9780857091390.2.587

Sathyanarayana, S., Wegrzyn, M., Olowojoba, G., Benedito, A., Gimenez, E., Huebner, C., & Henning, F. (2013). Multiwalled carbon nanotubes incorporated into a miscible blend of poly(phenylenether)/polystyrene – Processing and characterization. Express Polymer Letters, 7(7), 621-635. doi:10.3144/expresspolymlett.2013.59

Xiong, Z.-Y., Wang, L., Sun, Y., Guo, Z.-X., & Yu, J. (2013). Migration of MWCNTs during melt preparation of ABS/PC/MWCNT conductive composites via PC/MWCNT masterbatch approach. Polymer, 54(1), 447-455. doi:10.1016/j.polymer.2012.11.044 [+]
Göldel, A., & Pötschke, P. (2011). Carbon nanotubes in multiphase polymer blends. Polymer–Carbon Nanotube Composites, 587-620. doi:10.1533/9780857091390.2.587

Sathyanarayana, S., Wegrzyn, M., Olowojoba, G., Benedito, A., Gimenez, E., Huebner, C., & Henning, F. (2013). Multiwalled carbon nanotubes incorporated into a miscible blend of poly(phenylenether)/polystyrene – Processing and characterization. Express Polymer Letters, 7(7), 621-635. doi:10.3144/expresspolymlett.2013.59

Xiong, Z.-Y., Wang, L., Sun, Y., Guo, Z.-X., & Yu, J. (2013). Migration of MWCNTs during melt preparation of ABS/PC/MWCNT conductive composites via PC/MWCNT masterbatch approach. Polymer, 54(1), 447-455. doi:10.1016/j.polymer.2012.11.044

Sun, Y., Guo, Z.-X., & Yu, J. (2010). Effect of ABS Rubber Content on the Localization of MWCNTs in PC/ABS Blends and Electrical Resistivity of the Composites. Macromolecular Materials and Engineering, 295(3), 263-268. doi:10.1002/mame.200900242

Yang, L., Liu, F., Xia, H., Qian, X., Shen, K., & Zhang, J. (2011). Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon, 49(10), 3274-3283. doi:10.1016/j.carbon.2011.03.054

Pötschke, P., Dudkin, S. M., & Alig, I. (2003). Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer, 44(17), 5023-5030. doi:10.1016/s0032-3861(03)00451-8

Pötschke, P., Abdel-Goad, M., Alig, I., Dudkin, S., & Lellinger, D. (2004). Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer, 45(26), 8863-8870. doi:10.1016/j.polymer.2004.10.040

Villmow, T., Kretzschmar, B., & Pötschke, P. (2010). Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Composites Science and Technology, 70(14), 2045-2055. doi:10.1016/j.compscitech.2010.07.021

Villmow, T., Pegel, S., Pötschke, P., & Wagenknecht, U. (2008). Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Composites Science and Technology, 68(3-4), 777-789. doi:10.1016/j.compscitech.2007.08.031

Duong, H. M., Yamamoto, N., Bui, K., Papavassiliou, D. V., Maruyama, S., & Wardle, B. L. (2010). Morphology Effects on Nonisotropic Thermal Conduction of Aligned Single-Walled and Multi-Walled Carbon Nanotubes in Polymer Nanocomposites. The Journal of Physical Chemistry C, 114(19), 8851-8860. doi:10.1021/jp102138c

Sathyanarayana, S., Olowojoba, G., Weiss, P., Caglar, B., Pataki, B., Mikonsaari, I., … Henning, F. (2012). Compounding of MWCNTs with PS in a Twin-Screw Extruder with Varying Process Parameters: Morphology, Interfacial Behavior, Thermal Stability, Rheology, and Volume Resistivity. Macromolecular Materials and Engineering, 298(1), 89-105. doi:10.1002/mame.201200018

Vega, J. F., Martínez-Salazar, J., Trujillo, M., Arnal, M. L., Müller, A. J., Bredeau, S., & Dubois, P. (2009). Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules, 42(13), 4719-4727. doi:10.1021/ma900645f

Alig, I., Lellinger, D., Dudkin, S. M., & Pötschke, P. (2007). Conductivity spectroscopy on melt processed polypropylene–multiwalled carbon nanotube composites: Recovery after shear and crystallization. Polymer, 48(4), 1020-1029. doi:10.1016/j.polymer.2006.12.035

Hill, D. E., Lin, Y., Rao, A. M., Allard, L. F., & Sun, Y.-P. (2002). Functionalization of Carbon Nanotubes with Polystyrene. Macromolecules, 35(25), 9466-9471. doi:10.1021/ma020855r

Alig, I., Lellinger, D., Engel, M., Skipa, T., & Pötschke, P. (2008). Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments. Polymer, 49(7), 1902-1909. doi:10.1016/j.polymer.2008.01.073

Krause, B., Villmow, T., Boldt, R., Mende, M., Petzold, G., & Pötschke, P. (2011). Influence of dry grinding in a ball mill on the length of multiwalled carbon nanotubes and their dispersion and percolation behaviour in melt mixed polycarbonate composites. Composites Science and Technology, 71(8), 1145-1153. doi:10.1016/j.compscitech.2011.04.004

Krause, B., Pötschke, P., & Häußler, L. (2009). Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Composites Science and Technology, 69(10), 1505-1515. doi:10.1016/j.compscitech.2008.07.007

Nuriel, S., Liu, L., Barber, A. H., & Wagner, H. D. (2005). Direct measurement of multiwall nanotube surface tension. Chemical Physics Letters, 404(4-6), 263-266. doi:10.1016/j.cplett.2005.01.072

Barber, A. H., Cohen, S. R., & Wagner, H. D. (2004). Static and Dynamic Wetting Measurements of Single Carbon Nanotubes. Physical Review Letters, 92(18). doi:10.1103/physrevlett.92.186103

Sonnenfeld, A., Roth, C., Dimitrova, Z., Spillmann, A., & von Rohr, P. R. (2009). Plasma Enhanced Chemical Vapor Deposition on Particulate Solid-State Materials for Improved Powder Processing. Plasma Processes and Polymers, 6(S1), S860-S863. doi:10.1002/ppap.200932202

Bokobza, L., & Zhang, J. (2012). Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polymer Letters, 6(7), 601-608. doi:10.3144/expresspolymlett.2012.63

Deng, L., Eichhorn, S. J., Kao, C.-C., & Young, R. J. (2011). The Effective Young’s Modulus of Carbon Nanotubes in Composites. ACS Applied Materials & Interfaces, 3(2), 433-440. doi:10.1021/am1010145

Cooper, C. A., Young, R. J., & Halsall, M. (2001). Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 32(3-4), 401-411. doi:10.1016/s1359-835x(00)00107-x

Yan, X., Itoh, T., Kitahama, Y., Suzuki, T., Sato, H., Miyake, T., & Ozaki, Y. (2012). A Raman Spectroscopy Study on Single-Wall Carbon Nanotube/Polystyrene Nanocomposites: Mechanical Compression Transferred from the Polymer to Single-Wall Carbon Nanotubes. The Journal of Physical Chemistry C, 116(33), 17897-17903. doi:10.1021/jp303509g

Schartel, B., Braun, U., Knoll, U., Bartholmai, M., Goering, H., Neubert, D., & Pötschke, P. (2007). Mechanical, thermal, and fire behavior of bisphenol a polycarbonate/multiwall carbon nanotube nanocomposites. Polymer Engineering & Science, 48(1), 149-158. doi:10.1002/pen.20932

Su, S. P., Xu, Y. H., China, P. R., & Wilkie, C. A. (2011). Thermal degradation of polymer–carbon nanotube composites. Polymer–Carbon Nanotube Composites, 482-510. doi:10.1533/9780857091390.2.482

Abdel-Goad, M., & Pötschke, P. (2005). Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites. Journal of Non-Newtonian Fluid Mechanics, 128(1), 2-6. doi:10.1016/j.jnnfm.2005.01.008

Du, F., Scogna, R. C., Zhou, W., Brand, S., Fischer, J. E., & Winey, K. I. (2004). Nanotube Networks in Polymer Nanocomposites:  Rheology and Electrical Conductivity. Macromolecules, 37(24), 9048-9055. doi:10.1021/ma049164g

Abbasi, S., Carreau, P. J., & Derdouri, A. (2010). Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties. Polymer, 51(4), 922-935. doi:10.1016/j.polymer.2009.12.041

Affdl, J. C. H., & Kardos, J. L. (1976). The Halpin-Tsai equations: A review. Polymer Engineering and Science, 16(5), 344-352. doi:10.1002/pen.760160512

Jiang, Z., Hornsby, P., McCool, R., & Murphy, A. (2011). Mechanical and thermal properties of polyphenylene sulfide/multiwalled carbon nanotube composites. Journal of Applied Polymer Science, 123(5), 2676-2683. doi:10.1002/app.34669

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem