- -

Impedance measurement to assess epicardial fat prior to RF intraoperative cardiac ablation: a feasibility study using a computer model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Impedance measurement to assess epicardial fat prior to RF intraoperative cardiac ablation: a feasibility study using a computer model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Suárez, Ana es_ES
dc.contributor.author Hornero, Fernando es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2020-09-19T03:34:15Z
dc.date.available 2020-09-19T03:34:15Z
dc.date.issued 2010-11 es_ES
dc.identifier.issn 0967-3334 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150439
dc.description.abstract [EN] Radiofrequency (RF) cardiac ablation is used to treat certain types of arrhythmias. In the epicardial approach, efficacy of RF ablation is uncertain due to the presence of epicardial adipose tissue interposed between the ablation electrode and the atrial wall. We planned a feasibility study based on a theoretical model in order to assess a new technique to estimate the quantity of fat by conducting bioimpedance measurements using a multi-electrode probe. The finite element method was used to solve the electrical problem. The results showed that the measured impedance profile coincided approximately with the epicardial fat profile measured under the probe electrodes and also that the thicker the epicardial fat, the higher the impedance values. When the lateral fat width was less than 4.5 mm, the impedance values altered, suggesting that measurements should always be conducted over a sizeable fat layer. We concluded that impedance measurement could be a practical method of assessing epicardial fat prior to RF intraoperative cardiac ablation, i.e. 'to map' the amount of adipose tissue under the probe. es_ES
dc.description.sponsorship This work was supported by a research grant from the Spanish Government in the 'Plan Nacional de I+D+I del Ministerio de Ciencia e Innovacion' (TEC2008-01369/TEC). The English revision and correction of this note was funded by the Universidad Politecnica de Valencia, Spain. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Physiological Measurement es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial Fibrillation es_ES
dc.subject Bioimpedance Measurement es_ES
dc.subject Cardiac Ablation es_ES
dc.subject Computational Modeling es_ES
dc.subject Epicardial Ablation es_ES
dc.subject Epicardial Fat es_ES
dc.subject Finite Element Method es_ES
dc.subject Theoretical Model es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Impedance measurement to assess epicardial fat prior to RF intraoperative cardiac ablation: a feasibility study using a computer model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0967-3334/31/11/N03 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2008-01369/ES/MODELOS COMPUTACIONALES E INVESTIGACION EXPERIMENTAL EN EL ESTUDIO DE TECNICAS QUIRURGICAS DE CALENTAMIENTO DE TEJIDOS BIOLOGICOS MEDIANTE CORRIENTES DE RADIOFRECUENCIA./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation González-Suárez, A.; Hornero, F.; Berjano, E. (2010). Impedance measurement to assess epicardial fat prior to RF intraoperative cardiac ablation: a feasibility study using a computer model. Physiological Measurement. 31(11):95-104. https://doi.org/10.1088/0967-3334/31/11/N03 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/0967-3334/31/11/N03 es_ES
dc.description.upvformatpinicio 95 es_ES
dc.description.upvformatpfin 104 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 20952818 es_ES
dc.relation.pasarela S\39633 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Ba, M., Fornés, P., Nutu, O., Latrémouille, C., Carpentier, A., & Chachques, J. C. (2008). Treatment of atrial fibrillation by surgical epicardial ablation: Bipolar radiofrequency versus cryoablation. Archives of Cardiovascular Diseases, 101(11-12), 763-768. doi:10.1016/j.acvd.2008.07.004 es_ES
dc.description.references Benjamin, E. J. (1994). Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA: The Journal of the American Medical Association, 271(11), 840-844. doi:10.1001/jama.271.11.840 es_ES
dc.description.references Berjano, E. J., & Hornero, F. (2004). Thermal-Electrical Modeling for Epicardial Atrial Radiofrequency Ablation. IEEE Transactions on Biomedical Engineering, 51(8), 1348-1357. doi:10.1109/tbme.2004.827545 es_ES
dc.description.references Berjano, E. J., & Hornero, F. (2005). A cooled intraesophageal balloon to prevent thermal injury during endocardial surgical radiofrequency ablation of the left atrium: a finite element study. Physics in Medicine and Biology, 50(20), N269-N279. doi:10.1088/0031-9155/50/20/n03 es_ES
dc.description.references HORNERO, F., & BERJANO, E. J. (2006). Esophageal Temperature During Radiofrequency-Catheter Ablation of Left Atrium: A Three-Dimensional Computer Modeling Study. Journal of Cardiovascular Electrophysiology, 17(4), 405-410. doi:10.1111/j.1540-8167.2006.00404.x es_ES
dc.description.references Cox, J. L., Schuessler, R. B., Lappas, D. G., & Boineau, J. P. (1996). An 8½-Year Clinical Experience with Surgery for Atrial Fibrillation. Annals of Surgery, 224(3), 267-275. doi:10.1097/00000658-199609000-00003 es_ES
dc.description.references Deneke, T., Khargi, K., Müller, K.-M., Lemke, B., Mügge, A., Laczkovics, A., … Grewe, P. H. (2005). Histopathology of intraoperatively induced linear radiofrequency ablation lesions in patients with chronic atrial fibrillation. European Heart Journal, 26(17), 1797-1803. doi:10.1093/eurheartj/ehi255 es_ES
dc.description.references Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 es_ES
dc.description.references Dumas III, J. H., Himel IV, H. D., Kiser, A. C., Quint, S. R., & Knisley, S. B. (2008). Myocardial electrical impedance as a predictor of the quality of RF-induced linear lesions. Physiological Measurement, 29(10), 1195-1207. doi:10.1088/0967-3334/29/10/004 es_ES
dc.description.references Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine and Biology, 41(11), 2271-2293. doi:10.1088/0031-9155/41/11/003 es_ES
dc.description.references Suárez, A. G., Hornero, F., & Berjano, E. J. (2010). Mathematical Modeling of Epicardial RF Ablation of Atrial Tissue with Overlying Epicardial Fat. The Open Biomedical Engineering Journal, 4(1), 47-55. doi:10.2174/1874120701004020047 es_ES
dc.description.references Hong, K. N., Russo, M. J., Liberman, E. A., Trzebucki, A., Oz, M. C., Argenziano, M., & Williams, M. R. (2007). Effect of Epicardial Fat on Ablation Performance: A Three-Energy Source Comparison. Journal of Cardiac Surgery, 22(6), 521-524. doi:10.1111/j.1540-8191.2007.00454.x es_ES
dc.description.references Kannel, W. ., Wolf, P. ., Benjamin, E. ., & Levy, D. (1998). Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates 11Reprints are not available. The American Journal of Cardiology, 82(7), 2N-9N. doi:10.1016/s0002-9149(98)00583-9 es_ES
dc.description.references Khargi, K., Hutten, B. A., Lemke, B., & Deneke, T. (2005). Surgical treatment of atrial fibrillation; a systematic review☆. European Journal of Cardio-Thoracic Surgery, 27(2), 258-265. doi:10.1016/j.ejcts.2004.11.003 es_ES
dc.description.references Mitnovetski, S., Almeida, A. A., Goldstein, J., Pick, A. W., & Smith, J. A. (2009). Epicardial High-intensity Focused Ultrasound Cardiac Ablation for Surgical Treatment of Atrial Fibrillation. Heart, Lung and Circulation, 18(1), 28-31. doi:10.1016/j.hlc.2008.08.003 es_ES
dc.description.references Miyagi, Y., Ishii, Y., Nitta, T., Ochi, M., & Shimizu, K. (2009). Electrophysiological and Histological Assessment of Transmurality after Epicardial Ablation Using Unipolar Radiofrequency Energy. Journal of Cardiac Surgery, 24(1), 34-40. doi:10.1111/j.1540-8191.2008.00747.x es_ES
dc.description.references Pruitt, J. C., Lazzara, R. R., & Ebra, G. (2007). Minimally invasive surgical ablation of atrial fibrillation: The thoracoscopic box lesion approach. Journal of Interventional Cardiac Electrophysiology, 20(3), 83-87. doi:10.1007/s10840-007-9172-3 es_ES
dc.description.references Santiago, T., Melo, J., Gouveia, R. H., Neves, J., Abecasis, M., Adragão, P., & Martins, A. P. (2003). Epicardial radiofrequency applications: in vitro and in vivo studies on human atrial myocardium☆. European Journal of Cardio-Thoracic Surgery, 24(4), 481-486. doi:10.1016/s1010-7940(03)00344-0 es_ES
dc.description.references Santiago, T., Melo, J. oã. Q., Gouveia, R. H., & Martins, A. P. (2003). Intra-atrial temperatures in radiofrequency endocardial ablation: histologic evaluation of lesions. The Annals of Thoracic Surgery, 75(5), 1495-1501. doi:10.1016/s0003-4975(02)04990-1 es_ES
dc.description.references Wolf, P. A., Abbott, R. D., & Kannel, W. B. (1991). Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 22(8), 983-988. doi:10.1161/01.str.22.8.983 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem