Mostrar el registro sencillo del ítem
dc.contributor.author | González-Suárez, Ana | es_ES |
dc.contributor.author | Hornero, Fernando | es_ES |
dc.contributor.author | Berjano, Enrique | es_ES |
dc.date.accessioned | 2020-09-19T03:34:15Z | |
dc.date.available | 2020-09-19T03:34:15Z | |
dc.date.issued | 2010-11 | es_ES |
dc.identifier.issn | 0967-3334 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150439 | |
dc.description.abstract | [EN] Radiofrequency (RF) cardiac ablation is used to treat certain types of arrhythmias. In the epicardial approach, efficacy of RF ablation is uncertain due to the presence of epicardial adipose tissue interposed between the ablation electrode and the atrial wall. We planned a feasibility study based on a theoretical model in order to assess a new technique to estimate the quantity of fat by conducting bioimpedance measurements using a multi-electrode probe. The finite element method was used to solve the electrical problem. The results showed that the measured impedance profile coincided approximately with the epicardial fat profile measured under the probe electrodes and also that the thicker the epicardial fat, the higher the impedance values. When the lateral fat width was less than 4.5 mm, the impedance values altered, suggesting that measurements should always be conducted over a sizeable fat layer. We concluded that impedance measurement could be a practical method of assessing epicardial fat prior to RF intraoperative cardiac ablation, i.e. 'to map' the amount of adipose tissue under the probe. | es_ES |
dc.description.sponsorship | This work was supported by a research grant from the Spanish Government in the 'Plan Nacional de I+D+I del Ministerio de Ciencia e Innovacion' (TEC2008-01369/TEC). The English revision and correction of this note was funded by the Universidad Politecnica de Valencia, Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | Physiological Measurement | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Atrial Fibrillation | es_ES |
dc.subject | Bioimpedance Measurement | es_ES |
dc.subject | Cardiac Ablation | es_ES |
dc.subject | Computational Modeling | es_ES |
dc.subject | Epicardial Ablation | es_ES |
dc.subject | Epicardial Fat | es_ES |
dc.subject | Finite Element Method | es_ES |
dc.subject | Theoretical Model | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Impedance measurement to assess epicardial fat prior to RF intraoperative cardiac ablation: a feasibility study using a computer model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/0967-3334/31/11/N03 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2008-01369/ES/MODELOS COMPUTACIONALES E INVESTIGACION EXPERIMENTAL EN EL ESTUDIO DE TECNICAS QUIRURGICAS DE CALENTAMIENTO DE TEJIDOS BIOLOGICOS MEDIANTE CORRIENTES DE RADIOFRECUENCIA./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | González-Suárez, A.; Hornero, F.; Berjano, E. (2010). Impedance measurement to assess epicardial fat prior to RF intraoperative cardiac ablation: a feasibility study using a computer model. Physiological Measurement. 31(11):95-104. https://doi.org/10.1088/0967-3334/31/11/N03 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1088/0967-3334/31/11/N03 | es_ES |
dc.description.upvformatpinicio | 95 | es_ES |
dc.description.upvformatpfin | 104 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 31 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.pmid | 20952818 | es_ES |
dc.relation.pasarela | S\39633 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Ba, M., Fornés, P., Nutu, O., Latrémouille, C., Carpentier, A., & Chachques, J. C. (2008). Treatment of atrial fibrillation by surgical epicardial ablation: Bipolar radiofrequency versus cryoablation. Archives of Cardiovascular Diseases, 101(11-12), 763-768. doi:10.1016/j.acvd.2008.07.004 | es_ES |
dc.description.references | Benjamin, E. J. (1994). Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA: The Journal of the American Medical Association, 271(11), 840-844. doi:10.1001/jama.271.11.840 | es_ES |
dc.description.references | Berjano, E. J., & Hornero, F. (2004). Thermal-Electrical Modeling for Epicardial Atrial Radiofrequency Ablation. IEEE Transactions on Biomedical Engineering, 51(8), 1348-1357. doi:10.1109/tbme.2004.827545 | es_ES |
dc.description.references | Berjano, E. J., & Hornero, F. (2005). A cooled intraesophageal balloon to prevent thermal injury during endocardial surgical radiofrequency ablation of the left atrium: a finite element study. Physics in Medicine and Biology, 50(20), N269-N279. doi:10.1088/0031-9155/50/20/n03 | es_ES |
dc.description.references | HORNERO, F., & BERJANO, E. J. (2006). Esophageal Temperature During Radiofrequency-Catheter Ablation of Left Atrium: A Three-Dimensional Computer Modeling Study. Journal of Cardiovascular Electrophysiology, 17(4), 405-410. doi:10.1111/j.1540-8167.2006.00404.x | es_ES |
dc.description.references | Cox, J. L., Schuessler, R. B., Lappas, D. G., & Boineau, J. P. (1996). An 8½-Year Clinical Experience with Surgery for Atrial Fibrillation. Annals of Surgery, 224(3), 267-275. doi:10.1097/00000658-199609000-00003 | es_ES |
dc.description.references | Deneke, T., Khargi, K., Müller, K.-M., Lemke, B., Mügge, A., Laczkovics, A., … Grewe, P. H. (2005). Histopathology of intraoperatively induced linear radiofrequency ablation lesions in patients with chronic atrial fibrillation. European Heart Journal, 26(17), 1797-1803. doi:10.1093/eurheartj/ehi255 | es_ES |
dc.description.references | Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 | es_ES |
dc.description.references | Dumas III, J. H., Himel IV, H. D., Kiser, A. C., Quint, S. R., & Knisley, S. B. (2008). Myocardial electrical impedance as a predictor of the quality of RF-induced linear lesions. Physiological Measurement, 29(10), 1195-1207. doi:10.1088/0967-3334/29/10/004 | es_ES |
dc.description.references | Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine and Biology, 41(11), 2271-2293. doi:10.1088/0031-9155/41/11/003 | es_ES |
dc.description.references | Suárez, A. G., Hornero, F., & Berjano, E. J. (2010). Mathematical Modeling of Epicardial RF Ablation of Atrial Tissue with Overlying Epicardial Fat. The Open Biomedical Engineering Journal, 4(1), 47-55. doi:10.2174/1874120701004020047 | es_ES |
dc.description.references | Hong, K. N., Russo, M. J., Liberman, E. A., Trzebucki, A., Oz, M. C., Argenziano, M., & Williams, M. R. (2007). Effect of Epicardial Fat on Ablation Performance: A Three-Energy Source Comparison. Journal of Cardiac Surgery, 22(6), 521-524. doi:10.1111/j.1540-8191.2007.00454.x | es_ES |
dc.description.references | Kannel, W. ., Wolf, P. ., Benjamin, E. ., & Levy, D. (1998). Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates 11Reprints are not available. The American Journal of Cardiology, 82(7), 2N-9N. doi:10.1016/s0002-9149(98)00583-9 | es_ES |
dc.description.references | Khargi, K., Hutten, B. A., Lemke, B., & Deneke, T. (2005). Surgical treatment of atrial fibrillation; a systematic review☆. European Journal of Cardio-Thoracic Surgery, 27(2), 258-265. doi:10.1016/j.ejcts.2004.11.003 | es_ES |
dc.description.references | Mitnovetski, S., Almeida, A. A., Goldstein, J., Pick, A. W., & Smith, J. A. (2009). Epicardial High-intensity Focused Ultrasound Cardiac Ablation for Surgical Treatment of Atrial Fibrillation. Heart, Lung and Circulation, 18(1), 28-31. doi:10.1016/j.hlc.2008.08.003 | es_ES |
dc.description.references | Miyagi, Y., Ishii, Y., Nitta, T., Ochi, M., & Shimizu, K. (2009). Electrophysiological and Histological Assessment of Transmurality after Epicardial Ablation Using Unipolar Radiofrequency Energy. Journal of Cardiac Surgery, 24(1), 34-40. doi:10.1111/j.1540-8191.2008.00747.x | es_ES |
dc.description.references | Pruitt, J. C., Lazzara, R. R., & Ebra, G. (2007). Minimally invasive surgical ablation of atrial fibrillation: The thoracoscopic box lesion approach. Journal of Interventional Cardiac Electrophysiology, 20(3), 83-87. doi:10.1007/s10840-007-9172-3 | es_ES |
dc.description.references | Santiago, T., Melo, J., Gouveia, R. H., Neves, J., Abecasis, M., Adragão, P., & Martins, A. P. (2003). Epicardial radiofrequency applications: in vitro and in vivo studies on human atrial myocardium☆. European Journal of Cardio-Thoracic Surgery, 24(4), 481-486. doi:10.1016/s1010-7940(03)00344-0 | es_ES |
dc.description.references | Santiago, T., Melo, J. oã. Q., Gouveia, R. H., & Martins, A. P. (2003). Intra-atrial temperatures in radiofrequency endocardial ablation: histologic evaluation of lesions. The Annals of Thoracic Surgery, 75(5), 1495-1501. doi:10.1016/s0003-4975(02)04990-1 | es_ES |
dc.description.references | Wolf, P. A., Abbott, R. D., & Kannel, W. B. (1991). Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 22(8), 983-988. doi:10.1161/01.str.22.8.983 | es_ES |