- -

Enantioselective alkynylation of benzo[e][1,2,3]-oxathiazine 2,2-dioxides catalysed by (R)-VAPOL-Zn complexes: synthesis of chiral propargylic cyclic sulfamidates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enantioselective alkynylation of benzo[e][1,2,3]-oxathiazine 2,2-dioxides catalysed by (R)-VAPOL-Zn complexes: synthesis of chiral propargylic cyclic sulfamidates

Mostrar el registro completo del ítem

De Munck, L.; Monleón, A.; Vila, C.; Muñoz Roca, MDC.; Pedro, JR. (2015). Enantioselective alkynylation of benzo[e][1,2,3]-oxathiazine 2,2-dioxides catalysed by (R)-VAPOL-Zn complexes: synthesis of chiral propargylic cyclic sulfamidates. Organic & Biomolecular Chemistry. 13(27):7393-7396. https://doi.org/10.1039/c5ob01012h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150445

Ficheros en el ítem

Metadatos del ítem

Título: Enantioselective alkynylation of benzo[e][1,2,3]-oxathiazine 2,2-dioxides catalysed by (R)-VAPOL-Zn complexes: synthesis of chiral propargylic cyclic sulfamidates
Autor: De Munck, Lode Monleón, A. Vila, C. Muñoz Roca, María Del Carmen Pedro, J. R.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] (R)-VAPOL-Zn(II) complexes catalysed the enantioselective addition of terminal alkynes to cyclic benzoxathiazine 2,2-dioxides, providing the corresponding chiral propargylic sulfamidates with high yields (up to 93%) ...[+]
Derechos de uso: Cerrado
Fuente:
Organic & Biomolecular Chemistry. (issn: 1477-0520 )
DOI: 10.1039/c5ob01012h
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c5ob01012h
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//ISIC2012%2F001/
info:eu-repo/grantAgreement/MINECO//CTQ2013-47494-P/ES/NUEVOS RETOS EN EL DESARROLLO DE PROCESOS ENANTIOSELECTIVOS DE FORMACION DE ENLACES C-C MEDIANTE CATALISIS DUAL COOPERATIVA./
Agradecimientos:
Financial support from the MINECO (Gobierno de Espana; CTQ2013-47494-P) and from Generalitat Valenciana (ISIC2012/001) is gratefully acknowledged. L. M. and A. M. thank the Generalitat Valenciana for predoctoral grants. ...[+]
Tipo: Artículo

References

Kobayashi, S., Mori, Y., Fossey, J. S., & Salter, M. M. (2011). Catalytic Enantioselective Formation of C−C Bonds by Addition to Imines and Hydrazones: A Ten-Year Update. Chemical Reviews, 111(4), 2626-2704. doi:10.1021/cr100204f

Friestad, G. K., & Mathies, A. K. (2007). Recent developments in asymmetric catalytic addition to CN bonds. Tetrahedron, 63(12), 2541-2569. doi:10.1016/j.tet.2006.11.076

Enders, D., & Reinhold, U. (1997). Asymmetric synthesis of amines by nucleophilic 1,2-addition of organometallic reagents to the CN-double bond. Tetrahedron: Asymmetry, 8(12), 1895-1946. doi:10.1016/s0957-4166(97)00208-5 [+]
Kobayashi, S., Mori, Y., Fossey, J. S., & Salter, M. M. (2011). Catalytic Enantioselective Formation of C−C Bonds by Addition to Imines and Hydrazones: A Ten-Year Update. Chemical Reviews, 111(4), 2626-2704. doi:10.1021/cr100204f

Friestad, G. K., & Mathies, A. K. (2007). Recent developments in asymmetric catalytic addition to CN bonds. Tetrahedron, 63(12), 2541-2569. doi:10.1016/j.tet.2006.11.076

Enders, D., & Reinhold, U. (1997). Asymmetric synthesis of amines by nucleophilic 1,2-addition of organometallic reagents to the CN-double bond. Tetrahedron: Asymmetry, 8(12), 1895-1946. doi:10.1016/s0957-4166(97)00208-5

Bloch, R. (1998). Additions of Organometallic Reagents to CN Bonds:  Reactivity and Selectivity. Chemical Reviews, 98(4), 1407-1438. doi:10.1021/cr940474e

Alvaro, G., & Savoia, D. (2002). Addition of Organometallic Reagents to Imines Bearing Stereogenic N-Substituents. Stereochemical Models Explaining the 1,3-Asymmetric Induction. Synlett, 2002(05), 0651-0673. doi:10.1055/s-2002-25329

T. C. Nugent , Chiral Amine Synthesis: Methods, Developments and Applications, Wiley-VCH, Weinheim, 2010

Kim, S. J., Jung, M.-H., Yoo, K. H., Cho, J.-H., & Oh, C.-H. (2008). Synthesis and antibacterial activities of novel oxazolidinones having cyclic sulfonamide moieties. Bioorganic & Medicinal Chemistry Letters, 18(21), 5815-5818. doi:10.1016/j.bmcl.2008.09.034

Kim, S. J., Park, H. B., Lee, J. S., Jo, N. H., Yoo, K. H., Baek, D., … Oh, C.-H. (2007). Novel lβ-methylcarbapenems having cyclic sulfonamide moieties: Synthesis and evaluation of in vitro antibacterial activity. European Journal of Medicinal Chemistry, 42(9), 1176-1183. doi:10.1016/j.ejmech.2007.02.001

Hanson, S. R., Whalen, L. J., & Wong, C.-H. (2006). Synthesis and evaluation of general mechanism-based inhibitors of sulfatases based on (difluoro)methyl phenyl sulfate and cyclic phenyl sulfamate motifs. Bioorganic & Medicinal Chemistry, 14(24), 8386-8395. doi:10.1016/j.bmc.2006.09.002

Liu, Y., Xiao, W., Wong, M.-K., & Che, C.-M. (2007). Transition-Metal-Catalyzed Group Transfer Reactions for Selective C−H Bond Functionalization of Artemisinin. Organic Letters, 9(21), 4107-4110. doi:10.1021/ol071269r

Meléndez, R. E., & Lubell, W. D. (2003). Synthesis and reactivity of cyclic sulfamidites and sulfamidates. Tetrahedron, 59(15), 2581-2616. doi:10.1016/s0040-4020(03)00284-9

Bower, J. F., Rujirawanich, J., & Gallagher, T. (2010). N-Heterocycle construction via cyclic sulfamidates. Applications in synthesis. Organic & Biomolecular Chemistry, 8(7), 1505. doi:10.1039/b921842d

Wehn, P. M., & Du Bois, J. (2005). Exploring New Uses for C−H Amination:  Ni-Catalyzed Cross-Coupling of Cyclic Sulfamates. Organic Letters, 7(21), 4685-4688. doi:10.1021/ol051896l

Brodsky, B. H., & Du Bois, J. (2005). Oxaziridine-Mediated Catalytic Hydroxylation of Unactivated 3° C−H Bonds Using Hydrogen Peroxide. Journal of the American Chemical Society, 127(44), 15391-15393. doi:10.1021/ja055549i

Ni, C., Liu, J., Zhang, L., & Hu, J. (2007). A Remarkably Efficient Fluoroalkylation of Cyclic Sulfates and Sulfamidates with PhSO2CF2H: Facile Entry into β-Difluoromethylated or β-Difluoromethylenated Alcohols and Amines. Angewandte Chemie International Edition, 46(5), 786-789. doi:10.1002/anie.200603983

Bower, J. F., Szeto, P., & Gallagher, T. (2007). Enantiopure 1,4-Benzoxazines via 1,2-Cyclic Sulfamidates. Synthesis of Levofloxacin. Organic Letters, 9(17), 3283-3286. doi:10.1021/ol0712475

Rönnholm, P., Södergren, M., & Hilmersson, G. (2007). Improved and Efficient Synthesis of Chiral N,P-Ligands via Cyclic Sulfamidates for Asymmetric Addition of Butyllithium to Benzaldehyde. Organic Letters, 9(19), 3781-3783. doi:10.1021/ol701504c

Cohen, S. B., & Halcomb, R. L. (2002). Application of Serine- and Threonine-Derived Cyclic Sulfamidates for the Preparation ofS-Linked Glycosyl Amino Acids in Solution- and Solid-Phase Peptide Synthesis. Journal of the American Chemical Society, 124(11), 2534-2543. doi:10.1021/ja011932l

Bower, J. F., Szeto, P., & Gallagher, T. (2007). Cyclic Sulfamidates as Precursors to Alkylidene Pyrrolidines and Piperidines. Organic Letters, 9(23), 4909-4912. doi:10.1021/ol7022104

Wang, H., Jiang, T., & Xu, M.-H. (2013). Simple Branched Sulfur–Olefins as Chiral Ligands for Rh-Catalyzed Asymmetric Arylation of Cyclic Ketimines: Highly Enantioselective Construction of Tetrasubstituted Carbon Stereocenters. Journal of the American Chemical Society, 135(3), 971-974. doi:10.1021/ja3110818

Jiang, C., Lu, Y., & Hayashi, T. (2014). High Performance of a Palladium Phosphinooxazoline Catalyst in the Asymmetric Arylation of CyclicN-Sulfonyl Ketimines. Angewandte Chemie International Edition, 53(37), 9936-9939. doi:10.1002/anie.201406147

Hepburn, H. B., & Lam, H. W. (2014). The Isomerization of Allylrhodium Intermediates in the Rhodium-Catalyzed Nucleophilic Allylation of Cyclic Imines. Angewandte Chemie International Edition, 53(43), 11605-11610. doi:10.1002/anie.201407233

Luo, Y., Hepburn, H. B., Chotsaeng, N., & Lam, H. W. (2012). Enantioselective Rhodium-Catalyzed Nucleophilic Allylation of Cyclic Imines with Allylboron Reagents. Angewandte Chemie International Edition, 51(33), 8309-8313. doi:10.1002/anie.201204004

Luo, Y., Carnell, A. J., & Lam, H. W. (2012). Enantioselective Rhodium-Catalyzed Addition of Potassium Alkenyltrifluoroborates to Cyclic Imines. Angewandte Chemie International Edition, 51(27), 6762-6766. doi:10.1002/anie.201202136

Wang, Y.-Q., Yu, C.-B., Wang, D.-W., Wang, X.-B., & Zhou, Y.-G. (2008). Enantioselective Synthesis of Cyclic Sulfamidates via Pd-Catalyzed Hydrogenation. Organic Letters, 10(10), 2071-2074. doi:10.1021/ol800591u

Wang, Y.-Q., Cui, X.-Y., Ren, Y.-Y., & Zhang, Y. (2014). A highly enantioselective and regioselective organocatalytic direct Mannich reaction of methyl alkyl ketones with cyclic imines benzo[e][1,2,3]oxathiazine 2,2-dioxides. Org. Biomol. Chem., 12(45), 9101-9104. doi:10.1039/c4ob01902d

Zhang, H.-X., Nie, J., Cai, H., & Ma, J.-A. (2014). Cyclic Aldimines as Superior Electrophiles for Cu-Catalyzed Decarboxylative Mannich Reaction of β-Ketoacids with a Broad Scope and High Enantioselectivity. Organic Letters, 16(9), 2542-2545. doi:10.1021/ol500929d

Liu, Y., Kang, T.-R., Liu, Q.-Z., Chen, L.-M., Wang, Y.-C., Liu, J., … He, L. (2013). Enantioselective [4 + 2] Cycloaddition of Cyclic N-Sulfimines and Acyclic Enones or Ynones: A Concise Route to Sulfamidate-Fused 2,6-Disubstituted Piperidin-4-ones. Organic Letters, 15(23), 6090-6093. doi:10.1021/ol402977w

Ma, C., Gu, J., Teng, B., Zhou, Q.-Q., Li, R., & Chen, Y.-C. (2013). 1-Azadienes as Regio- and Chemoselective Dienophiles in Aminocatalytic Asymmetric Diels–Alder Reaction. Organic Letters, 15(24), 6206-6209. doi:10.1021/ol4030474

Yu, H., Zhang, L., Li, Z., Liu, H., Wang, B., Xiao, Y., & Guo, H. (2014). Phosphine-catalyzed [4+2] cycloaddition of sulfamate-derived cyclic imines with allenoates: synthesis of sulfamate-fused tetrahydropyridines. Tetrahedron, 70(2), 340-348. doi:10.1016/j.tet.2013.11.063

Cozzi, P. G., Hilgraf, R., & Zimmermann, N. (2004). Acetylenes in Catalysis: Enantioselective Additions to Carbonyl Groups and Imines and Applications Beyond. European Journal of Organic Chemistry, 2004(20), 4095-4105. doi:10.1002/ejoc.200400246

Zhu, H., Jiang, J., Ren, J., Yan, Y., & Pittman, Jr., C. (2005). Recently Developed Organometallic Complexes of Zn, Cu(Zn, Li), Fe, Ru and Less-used Ions. Use in Selective 1,2-or 1,4-Additions, Transfer Hydrogenations, Aldol Reactions and Diels-Alder Reactions. Current Organic Synthesis, 2(4), 547-587. doi:10.2174/157017905774322677

Zani, L., & Bolm, C. (2006). Direct addition of alkynes to imines and related CN electrophiles: A convenient access to propargylamines. Chem. Commun., (41), 4263-4275. doi:10.1039/b607986p

Hatano, M., Miyamoto, T., & Ishihara, K. (2007). Recent Progress in Selective Additions of Organometal Reagents to Carbonyl Compounds. Current Organic Chemistry, 11(2), 127-157. doi:10.2174/138527207779316453

Blay, G., Monleon, A., & Pedro, J. (2009). Recent Developments in Asymmetric Alkynylation of Imines. Current Organic Chemistry, 13(15), 1498-1539. doi:10.2174/138527209789177734

Wei, C., & Li, C.-J. (2002). Enantioselective Direct-Addition of Terminal Alkynes to Imines Catalyzed by Copper(I)pybox Complex in Water and in Toluene. Journal of the American Chemical Society, 124(20), 5638-5639. doi:10.1021/ja026007t

Bisai, A., & Singh, V. K. (2006). Enantioselective One-Pot Three-Component Synthesis of Propargylamines. Organic Letters, 8(11), 2405-2408. doi:10.1021/ol060793f

Colombo, F., Benaglia, M., Orlandi, S., Usuelli, F., & Celentano, G. (2006). Very Mild, Enantioselective Synthesis of Propargylamines Catalyzed by Copper(I)−Bisimine Complexes. The Journal of Organic Chemistry, 71(5), 2064-2070. doi:10.1021/jo052481g

Gommermann, N., & Knochel, P. (2006). Practical Highly Enantioselective Synthesis of Propargylamines through a Copper-Catalyzed One-Pot Three-Component Condensation Reaction. Chemistry - A European Journal, 12(16), 4380-4392. doi:10.1002/chem.200501233

Aschwanden, P., Stephenson, C. R. J., & Carreira, E. M. (2006). Highly Enantioselective Access to Primary Propargylamines:  4-Piperidinone as a Convenient Protecting Group. Organic Letters, 8(11), 2437-2440. doi:10.1021/ol060876w

Irmak, M., & Boysen, M. M. K. (2008). A New Pyridyl Bis(oxazoline) Ligand Prepared fromD-Glucosamine for Asymmetric Alkynylation of Imines. Advanced Synthesis & Catalysis, 350(3), 403-405. doi:10.1002/adsc.200700592

Nakamura, S., Ohara, M., Nakamura, Y., Shibata, N., & Toru, T. (2010). Copper-Catalyzed Enantioselective Three-Component Synthesis of Optically Active Propargylamines from Aldehydes, Amines, and Aliphatic Alkynes. Chemistry - A European Journal, 16(8), 2360-2362. doi:10.1002/chem.200903550

Zeng, T., Yang, L., Hudson, R., Song, G., Moores, A. R., & Li, C.-J. (2011). Fe3O4Nanoparticle-Supported Copper(I) Pybox Catalyst: Magnetically Recoverable Catalyst for Enantioselective Direct-Addition of Terminal Alkynes to Imines. Organic Letters, 13(3), 442-445. doi:10.1021/ol102759w

Wu, T. R., & Chong, J. M. (2006). Asymmetric Synthesis of Propargylamides via 3,3‘-Disubstituted Binaphthol-Modified Alkynylboronates. Organic Letters, 8(1), 15-18. doi:10.1021/ol0523087

Gonzalez, A. Z., Canales, E., & Soderquist, J. A. (2006). N-Propargylamides via the Asymmetric Michael Addition ofB-Alkynyl-10-TMS-9- borabicyclo[3.3.2]decanes toN-Acylimines. Organic Letters, 8(15), 3331-3334. doi:10.1021/ol0611595

Blay, G., Cardona, L., Climent, E., & Pedro, J. R. (2008). Highly Enantioselective Zinc/Binol-Catalyzed Alkynylation of N -Sulfonyl Aldimines. Angewandte Chemie International Edition, 47(30), 5593-5596. doi:10.1002/anie.200801020

Zhu, S., Yan, W., Mao, B., Jiang, X., & Wang, R. (2009). Enantioselective Nucleophilic Addition of Trimethylsilylacetylene toN-Phosphinoylimines Promoted byC2-Symmetric Proline-Derived β-Amino Alcohol. The Journal of Organic Chemistry, 74(18), 6980-6985. doi:10.1021/jo901492w

Blay, G., Brines, A., Monleón, A., & Pedro, J. R. (2012). Enantioselective Zinc/BINOL-Catalysed Alkynylation of Aldimines Generated in Situ from α-Amido Sulfones. Chemistry - A European Journal, 18(8), 2440-2444. doi:10.1002/chem.201102909

Rueping, M., Antonchick, A. P., & Brinkmann, C. (2007). Dual Catalysis: A Combined Enantioselective Brønsted Acid and Metal-Catalyzed Reaction—Metal Catalysis with Chiral Counterions. Angewandte Chemie International Edition, 46(36), 6903-6906. doi:10.1002/anie.200702439

Ren, Y.-Y., Wang, Y.-Q., & Liu, S. (2014). Asymmetric Alkynylation of Seven-Membered Cyclic Imines by Combining Chiral Phosphoric Acids and Ag(I) Catalysts: Synthesis of 11-Substituted-10,11-dihydrodibenzo[b,f][1,4]oxazepine Derivatives. The Journal of Organic Chemistry, 79(23), 11759-11767. doi:10.1021/jo5022037

Perepichka, I., Kundu, S., Hearne, Z., & Li, C.-J. (2015). Efficient merging of copper and photoredox catalysis for the asymmetric cross-dehydrogenative-coupling of alkynes and tetrahydroisoquinolines. Organic & Biomolecular Chemistry, 13(2), 447-451. doi:10.1039/c4ob02138j

Hashimoto, T., Omote, M., & Maruoka, K. (2011). Catalytic Asymmetric Alkynylation of C1-Substituted C,N-Cyclic Azomethine Imines by CuI/Chiral Brønsted Acid Co-Catalyst. Angewandte Chemie International Edition, 50(38), 8952-8955. doi:10.1002/anie.201104017

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem