- -

Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Bernabeu, Ana es_ES
dc.contributor.author Salcedo-Romero-de-Ávila, José-Vicente es_ES
dc.contributor.author Hilario Caballero, Adolfo es_ES
dc.contributor.author Pla Santamaría, David es_ES
dc.contributor.author Herrero Durá, Juan Manuel es_ES
dc.date.accessioned 2020-10-04T03:31:49Z
dc.date.available 2020-10-04T03:31:49Z
dc.date.issued 2019-12-11 es_ES
dc.identifier.issn 1076-2787 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151041
dc.description.abstract [EN] Despite the widespread use of the classical bicriteria Markowitz mean-variance framework, a broad consensus is emerging on the need to include more criteria for complex portfolio selection problems. Sustainable investing, also called socially responsible investment, is becoming a mainstream investment practice. In recent years, some scholars have attempted to include sustainability as a third criterion to better reflect the individual preferences of those ethical or green investors who are willing to combine strong financial performance with social benefits. For this purpose, new computational methods for optimizing this complex multiobjective problem are needed. Multiobjective evolutionary algorithms (MOEAs) have been recently used for portfolio selection, thus extending the mean-variance methodology to obtain a mean-variance-sustainability nondominated surface. In this paper, we apply a recent multiobjective genetic algorithm based on the concept of epsilon-dominance called ev-MOGA. This algorithm tries to ensure convergence towards the Pareto set in a smart distributed manner with limited memory resources. It also adjusts the limits of the Pareto front dynamically and prevents solutions belonging to the ends of the front from being lost. Moreover, the individual preferences of socially responsible investors could be visualised using a novel tool, known as level diagrams, which helps investors better understand the range of values attainable and the tradeoff between return, risk, and sustainability. es_ES
dc.description.sponsorship This work was funded by "Ministerio de Economia y Competitividad" (Spain), research project RTI2018-096904B-I00, and "Conselleria de Educacion, Cultura y DeporteGeneralitat Valenciana" (Spain), research project AICO/2019/055 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Complexity es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Complexity es_ES
dc.subject Mean-variance es_ES
dc.subject Mulutiobjective es_ES
dc.subject Genetic algorithm es_ES
dc.subject Sustainability es_ES
dc.subject Portfolio selection es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification ECONOMIA FINANCIERA Y CONTABILIDAD es_ES
dc.subject.classification ECONOMIA APLICADA es_ES
dc.title Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2019/6095712 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096904-B-I00/ES/HERRAMIENTAS DE OPTIMIZACION MULTIOBJETIVO PARA LA CARACTERIZACION Y ANALISIS DE CONCEPTOS DE DISEÑO Y SOLUCIONES SUB-OPTIMAS EFICIENTES EN PROBLEMAS DE INGENIERIA DE SISTEMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F055/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials es_ES
dc.description.bibliographicCitation Garcia-Bernabeu, A.; Salcedo-Romero-De-Ávila, J.; Hilario Caballero, A.; Pla Santamaría, D.; Herrero Durá, JM. (2019). Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA. Complexity. 2019:1-12. https://doi.org/10.1155/2019/6095712 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2019/6095712 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2019 es_ES
dc.relation.pasarela S\398882 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77. doi:10.2307/2975974 es_ES
dc.description.references Hirschberger, M., Steuer, R. E., Utz, S., Wimmer, M., & Qi, Y. (2013). Computing the Nondominated Surface in Tri-Criterion Portfolio Selection. Operations Research, 61(1), 169-183. doi:10.1287/opre.1120.1140 es_ES
dc.description.references Utz, S., Wimmer, M., Hirschberger, M., & Steuer, R. E. (2014). Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds. European Journal of Operational Research, 234(2), 491-498. doi:10.1016/j.ejor.2013.07.024 es_ES
dc.description.references Utz, S., Wimmer, M., & Steuer, R. E. (2015). Tri-criterion modeling for constructing more-sustainable mutual funds. European Journal of Operational Research, 246(1), 331-338. doi:10.1016/j.ejor.2015.04.035 es_ES
dc.description.references Qi, Y., Steuer, R. E., & Wimmer, M. (2015). An analytical derivation of the efficient surface in portfolio selection with three criteria. Annals of Operations Research, 251(1-2), 161-177. doi:10.1007/s10479-015-1900-y es_ES
dc.description.references Gasser, S. M., Rammerstorfer, M., & Weinmayer, K. (2017). Markowitz revisited: Social portfolio engineering. European Journal of Operational Research, 258(3), 1181-1190. doi:10.1016/j.ejor.2016.10.043 es_ES
dc.description.references Qi, Y. (2018). On outperforming social-screening-indexing by multiple-objective portfolio selection. Annals of Operations Research, 267(1-2), 493-513. doi:10.1007/s10479-018-2921-0 es_ES
dc.description.references Nathaphan, S., & Chunhachinda, P. (2010). Estimation Risk Modeling in Optimal Portfolio Selection: An Empirical Study from Emerging Markets. Economics Research International, 2010, 1-10. doi:10.1155/2010/340181 es_ES
dc.description.references DeMiguel, V., Garlappi, L., & Uppal, R. (2007). Optimal Versus Naive Diversification: How Inefficient is the 1/NPortfolio Strategy? Review of Financial Studies, 22(5), 1915-1953. doi:10.1093/rfs/hhm075 es_ES
dc.description.references Metaxiotis, K., & Liagkouras, K. (2012). Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review. Expert Systems with Applications, 39(14), 11685-11698. doi:10.1016/j.eswa.2012.04.053 es_ES
dc.description.references Bertsimas, D., & Shioda, R. (2007). Algorithm for cardinality-constrained quadratic optimization. Computational Optimization and Applications, 43(1), 1-22. doi:10.1007/s10589-007-9126-9 es_ES
dc.description.references Chang, T.-J., Yang, S.-C., & Chang, K.-J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications, 36(7), 10529-10537. doi:10.1016/j.eswa.2009.02.062 es_ES
dc.description.references Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538-550. doi:10.1016/j.ejor.2011.03.030 es_ES
dc.description.references Chen, B., Lin, Y., Zeng, W., Xu, H., & Zhang, D. (2017). The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm. Applied Intelligence, 47(2), 505-525. doi:10.1007/s10489-017-0898-z es_ES
dc.description.references Liagkouras, K. (2019). A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio optimization problem. Knowledge-Based Systems, 163, 186-203. doi:10.1016/j.knosys.2018.08.025 es_ES
dc.description.references Kaucic, M., Moradi, M., & Mirzazadeh, M. (2019). Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures. Financial Innovation, 5(1). doi:10.1186/s40854-019-0140-6 es_ES
dc.description.references Silva, Y. L. T. V., Herthel, A. B., & Subramanian, A. (2019). A multi-objective evolutionary algorithm for a class of mean-variance portfolio selection problems. Expert Systems with Applications, 133, 225-241. doi:10.1016/j.eswa.2019.05.018 es_ES
dc.description.references Anagnostopoulos, K. P., & Mamanis, G. (2009). Multiobjective evolutionary algorithms for complex portfolio optimization problems. Computational Management Science, 8(3), 259-279. doi:10.1007/s10287-009-0113-8 es_ES
dc.description.references Ehrgott, M., Klamroth, K., & Schwehm, C. (2004). An MCDM approach to portfolio optimization. European Journal of Operational Research, 155(3), 752-770. doi:10.1016/s0377-2217(02)00881-0 es_ES
dc.description.references Steuer, R. E., Qi, Y., & Hirschberger, M. (2006). Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Annals of Operations Research, 152(1), 297-317. doi:10.1007/s10479-006-0137-1 es_ES
dc.description.references Anagnostopoulos, K. P., & Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables. Computers & Operations Research, 37(7), 1285-1297. doi:10.1016/j.cor.2009.09.009 es_ES
dc.description.references Hallerbach, W. (2004). A framework for managing a portfolio of socially responsible investments. European Journal of Operational Research, 153(2), 517-529. doi:10.1016/s0377-2217(03)00172-3 es_ES
dc.description.references Ballestero, E., Bravo, M., Pérez-Gladish, B., Arenas-Parra, M., & Plà-Santamaria, D. (2012). Socially Responsible Investment: A multicriteria approach to portfolio selection combining ethical and financial objectives. European Journal of Operational Research, 216(2), 487-494. doi:10.1016/j.ejor.2011.07.011 es_ES
dc.description.references Cabello, J. M., Ruiz, F., Pérez-Gladish, B., & Méndez-Rodríguez, P. (2014). Synthetic indicators of mutual funds’ environmental responsibility: An application of the Reference Point Method. European Journal of Operational Research, 236(1), 313-325. doi:10.1016/j.ejor.2013.11.031 es_ES
dc.description.references Calvo, C., Ivorra, C., & Liern, V. (2014). Fuzzy portfolio selection with non-financial goals: exploring the efficient frontier. Annals of Operations Research, 245(1-2), 31-46. doi:10.1007/s10479-014-1561-2 es_ES
dc.description.references Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3), 263-282. doi:10.1162/106365602760234108 es_ES
dc.description.references Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.010 es_ES
dc.subject.ods 16.- Promover sociedades pacíficas e inclusivas para el desarrollo sostenible, facilitar acceso a la justicia para todos y crear instituciones eficaces, responsables e inclusivas a todos los niveles es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
dc.subject.ods 10.- Reducir las desigualdades entre países y dentro de ellos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem