- -

Combined effect of turbulence and aerosol on free-space optical links

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Combined effect of turbulence and aerosol on free-space optical links

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Libich, Jiri es_ES
dc.contributor.author Perez, Joaquin es_ES
dc.contributor.author Zvanovec, Stanislav es_ES
dc.contributor.author Ghassemlooy, Zabih es_ES
dc.contributor.author Nebuloni, Roberto es_ES
dc.contributor.author Capsoni, Carlo es_ES
dc.date.accessioned 2020-10-05T06:47:11Z
dc.date.available 2020-10-05T06:47:11Z
dc.date.issued 2017-01-10 es_ES
dc.identifier.issn 1559-128X es_ES
dc.identifier.uri http://hdl.handle.net/10251/151083
dc.description.abstract [EN] Despite the benefits of free-space optical (FSO) communications, their full utilization is limited by the influence of atmospheric weather conditions, such as fog, turbulence, smoke, snow, etc. In urban environments, additional environmental factors such as smog and dust particles due to air pollution caused by industry and motor vehicles may affect FSO link performance, which has not been investigated in detail yet. Both smog and dust particles cause absorption and scattering of the propagating optical signal, thus resulting in high attenuation. This work investigates the joint impact of atmospheric turbulence and dust particle-imposed scattering on FSO link performance as part of the last-mile access network in urban areas. Propagation of an optical wave is at first analyzed based on the microphysic approach, and the extinction caused by small particles is determined. An experimental measurement campaign using a dedicated test chamber is carried out to assess FSO link performance operating wavelengths of 670 nm and 830 nm and under dust and turbulent conditions. The measured attenuation and the 𝑄Q factor in terms of the velocity of particle flow and turbulence strength are analyzed. We show that for an airflow of 2 m/s, the 𝑄Q factor is almost 3.5 higher at the wavelength of 830 nm than at 670 nm. However, for a wavelength of 670 nm, the FSO link is less affected by the increase in airflow compared to 830 nm. The 𝑄 factor reduces with turbulence. Under similar turbulence conditions, for ash particles, the 𝑄Q factor is higher than that of sand particles. es_ES
dc.description.sponsorship European Social Fund (ESF) (CZ.1.07/2.3.00/30.0034); Ministerio de Economia y Competitividad (MINECO) (JCI-2012-14805); European Cooperation in Science and Technology (COST) (IC 1101); Ceske Vysoke Uceni Technicke v Praze (CVUT) (SGS14/190/OHK3/3T/13). es_ES
dc.language Inglés es_ES
dc.publisher The Optical Society es_ES
dc.relation.ispartof Applied Optics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Free-space optical communication es_ES
dc.subject Atmospheric turbulence es_ES
dc.subject Aerosols es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Combined effect of turbulence and aerosol on free-space optical links es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/AO.56.000336 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ESF//CZ.1.07%2F2.3.00%2F30.0034/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CVUT//SGS14%2F190%2FOHK3%2F3T%2F13/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//JCI-2012-14805/ES/JCI-2012-14805/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Libich, J.; Perez, J.; Zvanovec, S.; Ghassemlooy, Z.; Nebuloni, R.; Capsoni, C. (2017). Combined effect of turbulence and aerosol on free-space optical links. Applied Optics. 56(2):336-341. https://doi.org/10.1364/AO.56.000336 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/AO.56.000336 es_ES
dc.description.upvformatpinicio 336 es_ES
dc.description.upvformatpfin 341 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 56 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 28085871 es_ES
dc.relation.pasarela S\323420 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Czech Technical University in Prague es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Khalighi, M. A., & Uysal, M. (2014). Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Communications Surveys & Tutorials, 16(4), 2231-2258. doi:10.1109/comst.2014.2329501 es_ES
dc.description.references Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., … Hepsaydir, E. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122-130. doi:10.1109/mcom.2014.6736752 es_ES
dc.description.references Parca, G. (2013). Optical wireless transmission at 1.6-Tbit/s (16×100  Gbit/s) for next-generation convergent urban infrastructures. Optical Engineering, 52(11), 116102. doi:10.1117/1.oe.52.11.116102 es_ES
dc.description.references Kedar, D., & Arnon, S. (2004). Urban optical wireless communication networks: the main challenges and possible solutions. IEEE Communications Magazine, 42(5), S2-S7. doi:10.1109/mcom.2004.1299334 es_ES
dc.description.references Awan, M. S., Horwath, L. C., Muhammad, S. S., Leitgeb, E., Nadeem, F., & Khan, M. S. (2009). Characterization of Fog and Snow Attenuations for Free-Space Optical Propagation. Journal of Communications, 4(8). doi:10.4304/jcm.4.8.533-545 es_ES
dc.description.references Nauerth, S., Moll, F., Rau, M., Fuchs, C., Horwath, J., Frick, S., & Weinfurter, H. (2013). Air-to-ground quantum communication. Nature Photonics, 7(5), 382-386. doi:10.1038/nphoton.2013.46 es_ES
dc.description.references Perez, J., Zvanovec, S., Ghassemlooy, Z., & Popoola, W. O. (2014). Experimental characterization and mitigation of turbulence induced signal fades within an ad hoc FSO network. Optics Express, 22(3), 3208. doi:10.1364/oe.22.003208 es_ES
dc.description.references Kim, I. I., McArthur, B., & Korevaar, E. J. (2001). <title>Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications</title>. Optical Wireless Communications III. doi:10.1117/12.417512 es_ES
dc.description.references Rekab-Eslami, M., Esmaeili, M., & Aaron Gulliver, T. (2017). Generic Linear Network Code Construction Using Transversal Matroids. IEEE Communications Letters, 21(3), 448-451. doi:10.1109/lcomm.2016.2619706 es_ES
dc.description.references Corrsin, S. (1951). On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence. Journal of Applied Physics, 22(4), 469-473. doi:10.1063/1.1699986 es_ES
dc.description.references Ghassemlooy, Z., Le Minh, H., Rajbhandari, S., Perez, J., & Ijaz, M. (2012). Performance Analysis of Ethernet/Fast-Ethernet Free Space Optical Communications in a Controlled Weak Turbulence Condition. Journal of Lightwave Technology, 30(13), 2188-2194. doi:10.1109/jlt.2012.2194271 es_ES
dc.description.references Clifford, S. F., Ochs, G. R., & Lawrence, R. S. (1974). Saturation of optical scintillation by strong turbulence*. Journal of the Optical Society of America, 64(2), 148. doi:10.1364/josa.64.000148 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem