Mostrar el registro sencillo del ítem
dc.contributor.author | Libich, Jiri | es_ES |
dc.contributor.author | Perez, Joaquin | es_ES |
dc.contributor.author | Zvanovec, Stanislav | es_ES |
dc.contributor.author | Ghassemlooy, Zabih | es_ES |
dc.contributor.author | Nebuloni, Roberto | es_ES |
dc.contributor.author | Capsoni, Carlo | es_ES |
dc.date.accessioned | 2020-10-05T06:47:11Z | |
dc.date.available | 2020-10-05T06:47:11Z | |
dc.date.issued | 2017-01-10 | es_ES |
dc.identifier.issn | 1559-128X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151083 | |
dc.description.abstract | [EN] Despite the benefits of free-space optical (FSO) communications, their full utilization is limited by the influence of atmospheric weather conditions, such as fog, turbulence, smoke, snow, etc. In urban environments, additional environmental factors such as smog and dust particles due to air pollution caused by industry and motor vehicles may affect FSO link performance, which has not been investigated in detail yet. Both smog and dust particles cause absorption and scattering of the propagating optical signal, thus resulting in high attenuation. This work investigates the joint impact of atmospheric turbulence and dust particle-imposed scattering on FSO link performance as part of the last-mile access network in urban areas. Propagation of an optical wave is at first analyzed based on the microphysic approach, and the extinction caused by small particles is determined. An experimental measurement campaign using a dedicated test chamber is carried out to assess FSO link performance operating wavelengths of 670 nm and 830 nm and under dust and turbulent conditions. The measured attenuation and the 𝑄Q factor in terms of the velocity of particle flow and turbulence strength are analyzed. We show that for an airflow of 2 m/s, the 𝑄Q factor is almost 3.5 higher at the wavelength of 830 nm than at 670 nm. However, for a wavelength of 670 nm, the FSO link is less affected by the increase in airflow compared to 830 nm. The 𝑄 factor reduces with turbulence. Under similar turbulence conditions, for ash particles, the 𝑄Q factor is higher than that of sand particles. | es_ES |
dc.description.sponsorship | European Social Fund (ESF) (CZ.1.07/2.3.00/30.0034); Ministerio de Economia y Competitividad (MINECO) (JCI-2012-14805); European Cooperation in Science and Technology (COST) (IC 1101); Ceske Vysoke Uceni Technicke v Praze (CVUT) (SGS14/190/OHK3/3T/13). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Optical Society | es_ES |
dc.relation.ispartof | Applied Optics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Free-space optical communication | es_ES |
dc.subject | Atmospheric turbulence | es_ES |
dc.subject | Aerosols | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Combined effect of turbulence and aerosol on free-space optical links | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/AO.56.000336 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ESF//CZ.1.07%2F2.3.00%2F30.0034/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CVUT//SGS14%2F190%2FOHK3%2F3T%2F13/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//JCI-2012-14805/ES/JCI-2012-14805/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Libich, J.; Perez, J.; Zvanovec, S.; Ghassemlooy, Z.; Nebuloni, R.; Capsoni, C. (2017). Combined effect of turbulence and aerosol on free-space optical links. Applied Optics. 56(2):336-341. https://doi.org/10.1364/AO.56.000336 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/AO.56.000336 | es_ES |
dc.description.upvformatpinicio | 336 | es_ES |
dc.description.upvformatpfin | 341 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 56 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 28085871 | es_ES |
dc.relation.pasarela | S\323420 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Czech Technical University in Prague | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Khalighi, M. A., & Uysal, M. (2014). Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Communications Surveys & Tutorials, 16(4), 2231-2258. doi:10.1109/comst.2014.2329501 | es_ES |
dc.description.references | Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., … Hepsaydir, E. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122-130. doi:10.1109/mcom.2014.6736752 | es_ES |
dc.description.references | Parca, G. (2013). Optical wireless transmission at 1.6-Tbit/s (16×100 Gbit/s) for next-generation convergent urban infrastructures. Optical Engineering, 52(11), 116102. doi:10.1117/1.oe.52.11.116102 | es_ES |
dc.description.references | Kedar, D., & Arnon, S. (2004). Urban optical wireless communication networks: the main challenges and possible solutions. IEEE Communications Magazine, 42(5), S2-S7. doi:10.1109/mcom.2004.1299334 | es_ES |
dc.description.references | Awan, M. S., Horwath, L. C., Muhammad, S. S., Leitgeb, E., Nadeem, F., & Khan, M. S. (2009). Characterization of Fog and Snow Attenuations for Free-Space Optical Propagation. Journal of Communications, 4(8). doi:10.4304/jcm.4.8.533-545 | es_ES |
dc.description.references | Nauerth, S., Moll, F., Rau, M., Fuchs, C., Horwath, J., Frick, S., & Weinfurter, H. (2013). Air-to-ground quantum communication. Nature Photonics, 7(5), 382-386. doi:10.1038/nphoton.2013.46 | es_ES |
dc.description.references | Perez, J., Zvanovec, S., Ghassemlooy, Z., & Popoola, W. O. (2014). Experimental characterization and mitigation of turbulence induced signal fades within an ad hoc FSO network. Optics Express, 22(3), 3208. doi:10.1364/oe.22.003208 | es_ES |
dc.description.references | Kim, I. I., McArthur, B., & Korevaar, E. J. (2001). <title>Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications</title>. Optical Wireless Communications III. doi:10.1117/12.417512 | es_ES |
dc.description.references | Rekab-Eslami, M., Esmaeili, M., & Aaron Gulliver, T. (2017). Generic Linear Network Code Construction Using Transversal Matroids. IEEE Communications Letters, 21(3), 448-451. doi:10.1109/lcomm.2016.2619706 | es_ES |
dc.description.references | Corrsin, S. (1951). On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence. Journal of Applied Physics, 22(4), 469-473. doi:10.1063/1.1699986 | es_ES |
dc.description.references | Ghassemlooy, Z., Le Minh, H., Rajbhandari, S., Perez, J., & Ijaz, M. (2012). Performance Analysis of Ethernet/Fast-Ethernet Free Space Optical Communications in a Controlled Weak Turbulence Condition. Journal of Lightwave Technology, 30(13), 2188-2194. doi:10.1109/jlt.2012.2194271 | es_ES |
dc.description.references | Clifford, S. F., Ochs, G. R., & Lawrence, R. S. (1974). Saturation of optical scintillation by strong turbulence*. Journal of the Optical Society of America, 64(2), 148. doi:10.1364/josa.64.000148 | es_ES |