- -

Control de posición y fuerza con estimación de masa para sistemas cooperativos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control de posición y fuerza con estimación de masa para sistemas cooperativos

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez-Sánchez, P. es_ES
dc.contributor.author Arteaga-Pérez, M. A. es_ES
dc.date.accessioned 2020-10-05T11:53:06Z
dc.date.available 2020-10-05T11:53:06Z
dc.date.issued 2020-09-30
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/151140
dc.description.abstract [ES] La manipulación cooperativa de un objeto por dos o más brazos robóticos requiere controlar tanto el movimiento del objeto como las fuerzas ejercidas por los manipuladores. En términos de cinemática y estática, el enfoque elegido se basa en la denominada formulación simétrica. Se diseña un algoritmo de control que utiliza una modificación del método híbrido de torque computarizado basado en el Principio de Ortogonalización. Además, la masa del objeto se estima calculando la fuerza aplicada por cada efector final para sostener el objeto. El método propuesto es una extensión natural del esquema de control adaptativo previamente reportado para manipuladores geométricamente restringidos. La prueba de estabilidad se desarrolla utilizando la teoría de Lyapunov. Se presentan resultados experimentales. es_ES
dc.description.abstract [EN] The cooperative manipulation of an object by two or more robotic arms requires controlling both the object’s movement and the forces exerted by the manipulators. In terms of kinematics and static, the chosen approach is based on the so–called symmetric formulation. A control algorithm using a modified hybrid computed–torque method based on the Principle of Orthogonalization is designed. In addition, the mass of the object is estimated by calculating the force applied by each end–effector to hold the object. The proposed method is a natural extension of an adaptive control scheme previously reported for geometrically restricted manipulators. The stability test is developed using Lyapunov’s theory. Experimental results are presented. es_ES
dc.description.sponsorship Los autores agradecen a PRODEP (PROMEP) con el folio BUAP–811 y al proyecto PAPIIT IN117820. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Cooperative robots es_ES
dc.subject Adaptive control es_ES
dc.subject Force control es_ES
dc.subject Holonomic constraints es_ES
dc.subject Hyperbolic tangent functions es_ES
dc.subject Robots cooperativos es_ES
dc.subject Control adaptable es_ES
dc.subject Control de fuerza es_ES
dc.subject Restricciones holonómicas es_ES
dc.subject Función tangente hiperbólica es_ES
dc.title Control de posición y fuerza con estimación de masa para sistemas cooperativos es_ES
dc.title.alternative Position and force control with mass estimation for cooperative systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2020.12432
dc.relation.projectID info:eu-repo/grantAgreement/BUAP//811/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM/PAPIIT/IN117820/MX/Control y regulación de fuerza en sistemas de teleoperación bilateral./ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sánchez-Sánchez, P.; Arteaga-Pérez, MA. (2020). Control de posición y fuerza con estimación de masa para sistemas cooperativos. Revista Iberoamericana de Automática e Informática industrial. 17(4):368-379. https://doi.org/10.4995/riai.2020.12432 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2020.12432 es_ES
dc.description.upvformatpinicio 368 es_ES
dc.description.upvformatpfin 379 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\12432 es_ES
dc.contributor.funder Benemérita Universidad Autónoma de Puebla es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.description.references Arimoto, S. and Liu, Y. H. and Naniwa, T., 1993. Principle of Orthogonalization for Hybrid Control of Robot Arms. Proceedings of the IFAC 12th Triennial World Congress. Volume 26, Issue 2, Part 3, 335-340. Sidney, Australia. https://doi.org/10.1016/S1474-6670(17)48744-1 es_ES
dc.description.references Arimoto, S. and Liu, Y. H. and Naniwa, T., 1993. Model-Based Adaptive Hybrid Control for Geometrically Constrained Robots. Proceedings IEEE International Conference on Robotics and Automation. 618-623. Atlanta, GA, USA. https://doi.org/10.1109/ROBOT.1993.292047 es_ES
dc.description.references Dauchez, P. and Zapata, R., 1985. Co-ordinated control of two cooperative manipulators: the use of a kinematic model. Proceedings 15th Int. Symp. Industrial Robots. 641-648. Tokyo, Japan. es_ES
dc.description.references Fujii, S. and Kurono, S., 1975. Coordinated computer control of a pair of manipulators. Proceedings 4th IFToMM World Congress, University of Newcastle upon Tyne. 411-417. England. es_ES
dc.description.references Gudiño-Lau, J. and Arteaga-Pérez, M. A., 2003. Force Control with a Velocity Observer. Proc. European Control Conference (ECC 2003). 52-55. Cambridge, UK. https://doi.org/10.23919/ECC.2003.7086506 es_ES
dc.description.references Gudiño-Lau, J. and Arteaga-Pérez, M. A. and Muñoz, L. A. and Parra-Vega, V., 2004. On the control of cooperative robots without velocity measurements. IEEE Transactions on Control Systems Technology, 12 (4) 600-608. https://doi.org/10.23919/ECC.2003.10.1109/TCST.2004.824965 es_ES
dc.description.references Hayati, S., 1986. Hybrid position/force control of multi-arm cooperating robots. Proceedings of 1986 IEEE International Conference on Robotics and Automation. 82-89. San Francisco, CA, USA. https://doi.org/10.1109/ROBOT.1986.1087650 es_ES
dc.description.references Hwang, G. and Hashimoto, H. and Szemes, P. and Ando, N., 2005. An evaluation of grasp force control in single-master multi-slave tele-micromanipulation. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2179-2184. Alberta, Canada. https://doi.org/10.1109/IROS.2005.1545074 es_ES
dc.description.references Kelly, R. and Santibáñez, V., 2003. Control de Movimiento de Robots Manipuladores, Pearson Prentice-Hall, Madrid, España. ISBN-10: 8420538310 / ISBN-13: 9788420538310 es_ES
dc.description.references Khalil, H. K., 1996. Nonlinear Systems (2nd Ed), Prentice-Hall, Englewood Cliffs, New Jersey ISBN-10: 9332542031 / ISBN-13: 978-9332542037 es_ES
dc.description.references Khatib, O., 1987. A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation. IEEE Journal of Robotics and Automation, Vol. 3(1), 43-53. https://doi.org/10.1109/JRA.1987.1087068 es_ES
dc.description.references Koivo, A. J. and Bekey, G. A., 1987. Report of the Workshop on Coordinated Multiple Robot Manipulators: Planning, Control and Applications. IEEE Transactions on Robotics and Automation (IEEE Trans Robot Autom), 4(1) 91-93. ISSN: 1042-296X es_ES
dc.description.references McClamroch, N. H., 1986. Singular systems of differential equations as dynamic models for constrained robot systems. Proceedings of 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA 21-28. https://doi.org/10.1109/ROBOT.1986.1087712 es_ES
dc.description.references McClamroch, H. and Wang, D., 1990. Linear feedback control of position and contact force for a nonlinear constrained mechanism. ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 112(4), 640-645. https://doi.org/10.1115/1.2896189 es_ES
dc.description.references Murphey, T. D. and Horowitz, M., 2008. Adaptive cooperative manipulation with intermit- tent contact. Proc. IEEE International Conference on Robotics and Automation, Pasadena, California. USA 1483-1488. https://doi.org/10.1109/ROBOT.2008.4543411 es_ES
dc.description.references Nakano, E. and Ozaki, S. and Ishida, T. and Kato, I., 1974. Cooperational control of the anthropomorphous manipulator MELARM. Proceedings 4th Int. Symp. Industrial Ro- bots, 251-260. Tokyo, Japan. es_ES
dc.description.references Naniwa, T. and Arimoto, S. and Parra-Vega, V., 1994. A model-based adaptive control scheme for coordinated control of multiple manipulators. Proceedings of the IEEE/RS- J/GI International Conference on Intelligent Robots and Systems, Munich, Germany 695-702. https://doi.org/10.1109/IROS.1994.407357 es_ES
dc.description.references Pliego-Jiménez, J. and Arteaga-Pérez, M., 2017. On the adaptive control of cooperative robots with time-variant holonomic constraints. International Journal of Adaptive Control and Signal Processing, 31(8) 1217-1231. https://doi.org/10.1002/acs.2758 es_ES
dc.description.references Rahman, S. M. M. and Ikeura, R., 2012. Weight-perception-based novel control for cooperative lifting of objects with a power assist robot by two humans. International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy 228-233. https://doi.org/10.1109/BioRob.2012.6290259 es_ES
dc.description.references Raibert, M. and Craig, J., 1981. Hybrid position/force control of manipulators. ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 103(2), 126-133. https://doi.org/10.1115/1.3139652 es_ES
dc.description.references Rivera-Dueñas, J. C. and Arteaga-Pérez, M. A., 2013. Robot force control without dynamic model: Theory and experiments. Robotica, Vol. 31(1) 149-171. https://doi.org/10.1017/S026357471200015X es_ES
dc.description.references Rugthum, T. and Tao, G., 2014. An adaptive actuator failure compensation scheme for a cooperative manipulator system. Proc. American Control Conference, Portland, Oregon. USA 1951-1956. https://doi.org/10.1109/CDC.2015.7403208 es_ES
dc.description.references Sánchez-Sánchez, P. and Arteaga-Pérez, M. A., 2017. Improving force tracking control performance in cooperative robots. International Journal of Advanced Robotic Systems, 14(4) 1-15. https://doi.org/10.1177/1729881417708969 es_ES
dc.description.references Slotine, J. J. E. and Li, W., 1991. Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, New Jersey. ISBN-10: 0130408905 / ISBN-13: 978-0130408907 es_ES
dc.description.references Spong, M. W. and Hutchinson, S. and Vidyasagar, M., 2006. Robot Modeling and Control. John Wiley and Sons, USA. ISBN-10: 0471649902 / ISBN-13: 978-0471649908 es_ES
dc.description.references Tarn, T. J. and Bejczy, A. K. and Yun, X., 1988. New nonlinear control algorithms for multiple robot arms. IEEE Transactions on Aerospace and Electronic Systems, 24(5) 571-583. https://doi.org/10.1109/7.9685 es_ES
dc.description.references Uchiyama, M. and Iwasawa, N. and Hakomori, K., 1987. Hybrid position/force control for coordination of a two-arm robot. Proceedings of 1987 IEEE International Conference on Robotics and Automation, 1242-1247, Raleigh, NC, USA. https://doi.org/10.1109/ROBOT.1987.1087766 es_ES
dc.description.references Uchiyama, M. and Dauchez, P., 1988. A symmetric hybrid position/force control scheme for the coordination of two robots. Proceedings of 1988 IEEE International Conference on Robotics and Automation, 350-356, Philadelphia, PA, USA. https://doi.org/10.1109/ROBOT.1988.12073 es_ES
dc.description.references Uchiyama, M. and Dauchez, P., 1993. Symmetric kinematic formulation and non- master/slave coordinated control of two-arm robots. Journal Advanced Robotics. 7(4) 361-383. https://doi.org/10.1163/156855393X00221 es_ES
dc.description.references Yun-Hui, L. and Parra-Vega, V. and Arimoto, S., 1996. Decentralized Cooperation Control: Joint-Space Approaches for Holonomic Cooperations. Proc. IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota 2420-2425. https://doi.org/10.1109/ROBOT.1996.506526 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem