Mostrar el registro sencillo del ítem
dc.contributor.author | Licausi, Marie-Pierre | es_ES |
dc.contributor.author | Igual Muñoz, Anna Neus | es_ES |
dc.contributor.author | Amigó, Vicente | es_ES |
dc.contributor.author | Espallargas, N. | es_ES |
dc.date.accessioned | 2020-10-07T03:34:40Z | |
dc.date.available | 2020-10-07T03:34:40Z | |
dc.date.issued | 2015 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151299 | |
dc.description.abstract | [EN] Degradation mechanisms of biomedical alloys involve two different phenomena, corrosion and wear, which simultaneously act and may cause the failure of implants and prosthesis. In this work, tribocorrosion of Ti6Al4V biomedical alloy in artificial saliva is studied at open circuit potential (OCP) by a new electrochemical technique that allows measuring the galvanic potential and current between the wear track (anode) and the passive material (cathode) through zero-resistance ammetry. The experimental set-up was conceived for physically separating the depassivated area from the passive material, thus allowing to quantify the mechanically activated corrosion at OCP. Two different counterparts, SiC and Al2O3, were used against the Ti6Al4V alloy in order to analyse the influence of the initial contact pressure on the tribocorrosion mechanisms. A galvanic model based on the cathodic reaction kinetics can describe the current and the potential evolution with time during sliding. It has been observed that at the highest initial contact pressures, wear follows the Archard law, while at lower contact pressures, third body appeared and wear can not be described by the Archard law. Quantification of the evolution of the depassivated wear track with time was obtained and the deviation from the Archard predictions was analysed. | es_ES |
dc.description.sponsorship | The authors would like to thank the financial support from NTNU (Project Number 69450741) for performing the experiments of this work and Universitat Politècnica de Valencia VLC/Campus (PMIA-2013) for the mobility Grant. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Bio- and Tribo-Corrosion (Online) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biotribocorrosion | es_ES |
dc.subject | Corrosion | es_ES |
dc.subject | Ti6Al4V | es_ES |
dc.subject | Zero-resistance ammetry | es_ES |
dc.subject | Galvanic model | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Tribocorrosion Mechanisms of Ti6Al4V in Artificial Saliva by Zero-Resistance Ammetry (ZRA) Technique | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s40735-015-0008-x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PMIA-2013/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NTNU//69450741/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Licausi, M.; Igual Muñoz, AN.; Amigó, V.; Espallargas, N. (2015). Tribocorrosion Mechanisms of Ti6Al4V in Artificial Saliva by Zero-Resistance Ammetry (ZRA) Technique. Journal of Bio- and Tribo-Corrosion (Online). 1(8):1-11. https://doi.org/10.1007/s40735-015-0008-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s40735-015-0008-x | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 1 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 2198-4239 | es_ES |
dc.relation.pasarela | S\283403 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Norwegian University of Science and Technology | es_ES |
dc.description.references | Martin É, Azzi M, Salishchev GA, Szpunar J (2010) Influence of microstructure and texture on the corrosion and tribocorrosion behaviour of Ti–6Al–4V. Tribol Int 43:918–924 | es_ES |
dc.description.references | Nosonovsky M, Bhushan B (2010) Green tribology: principles, research areas and challenges. Philos Trans R Soc A 368:4677–4694 | es_ES |
dc.description.references | Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425 | es_ES |
dc.description.references | Niinomi M, Kuroda D, Fukunaga K, Morinaga M, Kato Y, Yashiro T et al (1999) Corrosion wear fracture of new β type biomedical titanium alloys. Mater Sci Eng A 263:193–199 | es_ES |
dc.description.references | Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A 243:244–249 | es_ES |
dc.description.references | Eisenbarth E, Velten D, Müller M, Thull R, Breme J (2004) Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 25:5705–5713 | es_ES |
dc.description.references | More NS, Diomidis N, Paul SN, Roy M, Mischler S (2011) Tribocorrosion behaviour of β titanium alloys in physiological solutions containing synovial components. Mater Sci Eng C 31:400–408 | es_ES |
dc.description.references | Milošev I, Metikoš-Huković M, Strehblow H-H (2000) Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials 21:2103–2113 | es_ES |
dc.description.references | Komotori J, Hisamori N, Ohmori Y (2007) The corrosion/wear mechanisms of Ti–6Al–4V alloy for different scratching rates. Wear 263:412–418 | es_ES |
dc.description.references | Dimah MK, Devesa Albeza F, Amigó Borrás V, Igual Muñoz A (2012) Study of the biotribocorrosion behaviour of titanium biomedical alloys in simulated body fluids by electrochemical techniques. Wear 294–295:409–418 | es_ES |
dc.description.references | Licausi MP, Igual Muñoz A, Amigó Borrás V (2013) Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs. J Phys D 46:404003 | es_ES |
dc.description.references | Runa MJ, Mathew MT, Rocha LA (2013) Tribocorrosion response of the Ti6Al4V alloys commonly used in femoral stems. Tribol Int 68:85–93 | es_ES |
dc.description.references | Munoz AI, Espallargas N (2011) Tribocorrosion mechanisms in sliding contacts. In: Landolt D, Mischler S (eds) Tribocorrosion of passive metals and coatings. Woodhead Publishing, Lausanne | es_ES |
dc.description.references | Mischler S (2008) Triboelectrochemical techniques and interpretation methods in tribocorrosion: a comparative evaluation. Tribol Int 41:573–583 | es_ES |
dc.description.references | Espallargas N, Johnsen R, Torres C, Muñoz AI (2013) A new experimental technique for quantifying the galvanic coupling effects on stainless steel during tribocorrosion under equilibrium conditions. Wear 307:190–197 | es_ES |
dc.description.references | Vieira AC, Rocha LA, Papageorgiou N, Mischler S (2012) Mechanical and electrochemical deterioration mechanisms in the tribocorrosion of Al alloys in NaCl and in NaNO3 solutions. Corros Sci 54:26–35 | es_ES |
dc.description.references | Papageorgiou N, Mischler S (2012) Electrochemical simulation of the current and potential response in sliding tribocorrosion. Tribol Lett 48(3):271–283 | es_ES |
dc.description.references | Papageorgiou N, von Bonin A, Espallargas N (2014) Tribocorrosion mechanisms of NiCrMo-625 alloy: an electrochemical modeling approach. Tribol Int 73:177–186 | es_ES |
dc.description.references | Dearnley PA, Dahm KL, Çimenoglu H (2004) The corrosion-wear behaviour of thermally oxidised CP-Ti and Ti-6Al-4V. Wear 256:469–479 | es_ES |