- -

Mixed Bruce-Roberts numbers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mixed Bruce-Roberts numbers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bivià-Ausina, Carles es_ES
dc.contributor.author Ruas, M.A.S. es_ES
dc.date.accessioned 2020-10-09T03:31:24Z
dc.date.available 2020-10-09T03:31:24Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 0013-0915 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151441
dc.description.abstract [EN] We extend the notions of mu*- sequences and Tjurina numbers of functions to the framework of Bruce-Roberts numbers, that is, to pairs formed by the germ at 0 of a complex analytic variety X. Cn and a finitely R( X)-determined analytic function germ f : (Cn, 0). (C, 0). We analyze some fundamental properties of these numbers. es_ES
dc.description.sponsorship Part of this work was developed during the stay of the first author at the Departamento de Matematica of ICMC, Sao Carlos, Universidade de Sao Paulo (Brazil), in February and July 2018. The first author wishes to thank this institution for their hospitality and working conditions and to FAPESP for financial support. The first author was partially supported by MICINN Grant PGC2018-094889-B-I00 and FAPESP Grant 2014/00304-2. The second author was partially supported by CNPq Grant 306306/2015-8 and FAPESP Grant 2014/00304-2. es_ES
dc.language Inglés es_ES
dc.publisher Cambridge University Press es_ES
dc.relation.ispartof Proceedings of the Edinburgh Mathematical Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Milnor number es_ES
dc.subject Logarithmic vector field es_ES
dc.subject Tjurina number es_ES
dc.subject Finite determinacy es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Mixed Bruce-Roberts numbers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/S0013091519000543 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2014%2F00304-2/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//306306%2F2015-8/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094889-B-I00/ES/SINGULARIDADES, GEOMETRIA GENERICA Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bivià-Ausina, C.; Ruas, M. (2020). Mixed Bruce-Roberts numbers. Proceedings of the Edinburgh Mathematical Society. 63(2):456-474. https://doi.org/10.1017/S0013091519000543 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1017/S0013091519000543 es_ES
dc.description.upvformatpinicio 456 es_ES
dc.description.upvformatpfin 474 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 63 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\404065 es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de São Paulo es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Damon, J. (1996). Higher multiplicities and almost free divisors and complete intersections. Memoirs of the American Mathematical Society, 123(589), 0-0. doi:10.1090/memo/0589 es_ES
dc.description.references Wahl, J. M. (1983). Derivations, automorphisms and deformations of quasihomogeneous singularities. Proceedings of Symposia in Pure Mathematics, 613-624. doi:10.1090/pspum/040.2/713285 es_ES
dc.description.references De Goes Grulha, N. (2008). THE EULER OBSTRUCTION AND BRUCE-ROBERTS’ MILNOR NUMBER. The Quarterly Journal of Mathematics, 60(3), 291-302. doi:10.1093/qmath/han011 es_ES
dc.description.references Greuel, G.-M. (1975). Der Gau�-Manin-Zusammenhang isolierter Singularit�ten von vollst�ndigen Durchschnitten. Mathematische Annalen, 214(3), 235-266. doi:10.1007/bf01352108 es_ES
dc.description.references Gaffney, T. (1996). Multiplicities and equisingularity of ICIS germs. Inventiones Mathematicae, 123(1), 209-220. doi:10.1007/bf01232372 es_ES
dc.description.references Damon, J. (2002). On the freeness of equisingular deformations of plane curve singularities. Topology and its Applications, 118(1-2), 31-43. doi:10.1016/s0166-8641(01)00040-2 es_ES
dc.description.references Bruce, J. W., & Roberts, R. M. (1988). Critical points of functions on analytic varieties. Topology, 27(1), 57-90. doi:10.1016/0040-9383(88)90007-9 es_ES
dc.description.references Decker, W. , Greuel, G.-M. , Pfister, G. and Schönemann, H. , Singular 4-0-2. A computer algebra system for polynomial computations. Available at http://www.singular.uni-kl.de (2015). es_ES
dc.description.references Looijenga, E. J. N. (1984). Isolated Singular Points on Complete Intersections. doi:10.1017/cbo9780511662720 es_ES
dc.description.references AHMED, I., RUAS, M. A. S., & TOMAZELLA, J. N. (2013). Invariants of topological relative right equivalences. Mathematical Proceedings of the Cambridge Philosophical Society, 155(2), 307-315. doi:10.1017/s0305004113000297 es_ES
dc.description.references Aleksandrov, A. G. (1986). COHOMOLOGY OF A QUASIHOMOGENEOUS COMPLETE INTERSECTION. Mathematics of the USSR-Izvestiya, 26(3), 437-477. doi:10.1070/im1986v026n03abeh001155 es_ES
dc.description.references Briançon, J., & Maynadier-Gervais, H. (2002). Sur le nombre de Milnor d’une singularité semi-quasi-homogène. Comptes Rendus Mathematique, 334(4), 317-320. doi:10.1016/s1631-073x(02)02256-2 es_ES
dc.description.references Giusti, M., & Henry, J.-P.-G. (1980). Minorations de nombres de Milnor. Bulletin de la Société mathématique de France, 79, 17-45. doi:10.24033/bsmf.1907 es_ES
dc.description.references Hauser, H., & Müller, G. (1993). Affine varieties and lie algebras of vector fields. Manuscripta Mathematica, 80(1), 309-337. doi:10.1007/bf03026556 es_ES
dc.description.references Liu, Y. (2018). Milnor and Tjurina numbers for a hypersurface germ with isolated singularity. Comptes Rendus Mathematique, 356(9), 963-966. doi:10.1016/j.crma.2018.07.004 es_ES
dc.description.references Nuno-Ballesteros, J. J., Orefice, B., & Tomazella, J. N. (2011). THE BRUCE-ROBERTS NUMBER OF A FUNCTION ON A WEIGHTED HOMOGENEOUS HYPERSURFACE. The Quarterly Journal of Mathematics, 64(1), 269-280. doi:10.1093/qmath/har032 es_ES
dc.description.references Ohmoto, T., Suwa, T., & Yokura, S. (1997). A remark on the Chern classes of local complete intersections. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 73(5), 93-95. doi:10.3792/pjaa.73.93 es_ES
dc.description.references Lê Tráng, D. (1974). Calculation of Milnor number of isolated singularity of complete intersection. Functional Analysis and Its Applications, 8(2), 127-131. doi:10.1007/bf01078597 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem