Damon, J. (1996). Higher multiplicities and almost free divisors and complete intersections. Memoirs of the American Mathematical Society, 123(589), 0-0. doi:10.1090/memo/0589
Wahl, J. M. (1983). Derivations, automorphisms and deformations of quasihomogeneous singularities. Proceedings of Symposia in Pure Mathematics, 613-624. doi:10.1090/pspum/040.2/713285
De Goes Grulha, N. (2008). THE EULER OBSTRUCTION AND BRUCE-ROBERTS’ MILNOR NUMBER. The Quarterly Journal of Mathematics, 60(3), 291-302. doi:10.1093/qmath/han011
[+]
Damon, J. (1996). Higher multiplicities and almost free divisors and complete intersections. Memoirs of the American Mathematical Society, 123(589), 0-0. doi:10.1090/memo/0589
Wahl, J. M. (1983). Derivations, automorphisms and deformations of quasihomogeneous singularities. Proceedings of Symposia in Pure Mathematics, 613-624. doi:10.1090/pspum/040.2/713285
De Goes Grulha, N. (2008). THE EULER OBSTRUCTION AND BRUCE-ROBERTS’ MILNOR NUMBER. The Quarterly Journal of Mathematics, 60(3), 291-302. doi:10.1093/qmath/han011
Greuel, G.-M. (1975). Der Gau�-Manin-Zusammenhang isolierter Singularit�ten von vollst�ndigen Durchschnitten. Mathematische Annalen, 214(3), 235-266. doi:10.1007/bf01352108
Gaffney, T. (1996). Multiplicities and equisingularity of ICIS germs. Inventiones Mathematicae, 123(1), 209-220. doi:10.1007/bf01232372
Damon, J. (2002). On the freeness of equisingular deformations of plane curve singularities. Topology and its Applications, 118(1-2), 31-43. doi:10.1016/s0166-8641(01)00040-2
Bruce, J. W., & Roberts, R. M. (1988). Critical points of functions on analytic varieties. Topology, 27(1), 57-90. doi:10.1016/0040-9383(88)90007-9
Decker, W. , Greuel, G.-M. , Pfister, G. and Schönemann, H. , Singular 4-0-2. A computer algebra system for polynomial computations. Available at http://www.singular.uni-kl.de (2015).
Looijenga, E. J. N. (1984). Isolated Singular Points on Complete Intersections. doi:10.1017/cbo9780511662720
AHMED, I., RUAS, M. A. S., & TOMAZELLA, J. N. (2013). Invariants of topological relative right equivalences. Mathematical Proceedings of the Cambridge Philosophical Society, 155(2), 307-315. doi:10.1017/s0305004113000297
Aleksandrov, A. G. (1986). COHOMOLOGY OF A QUASIHOMOGENEOUS COMPLETE INTERSECTION. Mathematics of the USSR-Izvestiya, 26(3), 437-477. doi:10.1070/im1986v026n03abeh001155
Briançon, J., & Maynadier-Gervais, H. (2002). Sur le nombre de Milnor d’une singularité semi-quasi-homogène. Comptes Rendus Mathematique, 334(4), 317-320. doi:10.1016/s1631-073x(02)02256-2
Giusti, M., & Henry, J.-P.-G. (1980). Minorations de nombres de Milnor. Bulletin de la Société mathématique de France, 79, 17-45. doi:10.24033/bsmf.1907
Hauser, H., & Müller, G. (1993). Affine varieties and lie algebras of vector fields. Manuscripta Mathematica, 80(1), 309-337. doi:10.1007/bf03026556
Liu, Y. (2018). Milnor and Tjurina numbers for a hypersurface germ with isolated singularity. Comptes Rendus Mathematique, 356(9), 963-966. doi:10.1016/j.crma.2018.07.004
Nuno-Ballesteros, J. J., Orefice, B., & Tomazella, J. N. (2011). THE BRUCE-ROBERTS NUMBER OF A FUNCTION ON A WEIGHTED HOMOGENEOUS HYPERSURFACE. The Quarterly Journal of Mathematics, 64(1), 269-280. doi:10.1093/qmath/har032
Ohmoto, T., Suwa, T., & Yokura, S. (1997). A remark on the Chern classes of local complete intersections. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 73(5), 93-95. doi:10.3792/pjaa.73.93
Lê Tráng, D. (1974). Calculation of Milnor number of isolated singularity of complete intersection. Functional Analysis and Its Applications, 8(2), 127-131. doi:10.1007/bf01078597
[-]