- -

Automatic intensity windowing of mammographic images based on a perceptual metric

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic intensity windowing of mammographic images based on a perceptual metric

Mostrar el registro completo del ítem

Albiol Colomer, A.; Corbi, A.; Albiol Colomer, F. (2017). Automatic intensity windowing of mammographic images based on a perceptual metric. Medical Physics. 44(4):1369-1378. https://doi.org/10.1002/mp.12144

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152480

Ficheros en el ítem

Metadatos del ítem

Título: Automatic intensity windowing of mammographic images based on a perceptual metric
Autor: Albiol Colomer, Alberto Corbi, Alberto Albiol Colomer, Francisco
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] Purpose: Initial auto-adjustment of the window level WL and width WW applied to mammographic images. The proposed intensity windowing (IW) method is based on the maximization of the mutual information (MI) between a ...[+]
Palabras clave: Contrast stretching , Gabor filtering , Human visual system , Mammogram , Mutual information , Window level/width
Derechos de uso: Reserva de todos los derechos
Fuente:
Medical Physics. (issn: 0094-2405 )
DOI: 10.1002/mp.12144
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mp.12144
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/
info:eu-repo/grantAgreement/UV//CPI-15-170/
info:eu-repo/grantAgreement/MINECO//CPAN-13TR01/
info:eu-repo/grantAgreement/MINETUR//TSI-100101-2013-0019/ES/PROYECTO PARA EL DESARROLLO DE UN DISPOSITIVO DE IMÁGEN DENSITOMÉTRIA PARA LA MEDICIÓN PRECISA DE LA DOSIS EFECTIVA./
Agradecimientos:
This work has the support of IST S.L., University of Valencia (CPI15170), Consolider (CPAN13TR01), MINETUR (TSI1001012013019) and IFIC (Severo Ochoa Centre of Excellence SEV20140398). The authors would also like to thank ...[+]
Tipo: Artículo

References

Maidment, A. D. A., Fahrig, R., & Yaffe, M. J. (1993). Dynamic range requirements in digital mammography. Medical Physics, 20(6), 1621-1633. doi:10.1118/1.596949

Kimpe, T., & Tuytschaever, T. (2006). Increasing the Number of Gray Shades in Medical Display Systems—How Much is Enough? Journal of Digital Imaging, 20(4), 422-432. doi:10.1007/s10278-006-1052-3

ACR, AAPM, and SIIM Practice parameter for determinants of image quality in digital mammography 2014 [+]
Maidment, A. D. A., Fahrig, R., & Yaffe, M. J. (1993). Dynamic range requirements in digital mammography. Medical Physics, 20(6), 1621-1633. doi:10.1118/1.596949

Kimpe, T., & Tuytschaever, T. (2006). Increasing the Number of Gray Shades in Medical Display Systems—How Much is Enough? Journal of Digital Imaging, 20(4), 422-432. doi:10.1007/s10278-006-1052-3

ACR, AAPM, and SIIM Practice parameter for determinants of image quality in digital mammography 2014

Committee DS PS3.3 information object definitions 2015

Pisano, E. D., Chandramouli, J., Hemminger, B. M., Glueck, D., Johnston, R. E., Muller, K., … Pizer, S. (1997). The effect of intensity windowing on the detection of simulated masses embedded in dense portions of digitized mammograms in a laboratory setting. Journal of Digital Imaging, 10(4), 174-182. doi:10.1007/bf03168840

Börjesson, S., Håkansson, M., Båth, M., Kheddache, S., Svensson, S., Tingberg, A., … Månsson, L. G. (2005). A software tool for increased efficiency in observer performance studies in radiology. Radiation Protection Dosimetry, 114(1-3), 45-52. doi:10.1093/rpd/nch550

Sahidan, S. I., Mashor, M. Y., Wahab, A. S. W., Salleh, Z., & Ja’afar, H. (s. f.). Local and Global Contrast Stretching For Color Contrast Enhancement on Ziehl-Neelsen Tissue Section Slide Images. 4th Kuala Lumpur International Conference on Biomedical Engineering 2008, 583-586. doi:10.1007/978-3-540-69139-6_146

Ganesan, K., Acharya, U. R., Chua, C. K., Min, L. C., Abraham, K. T., & Ng, K.-H. (2013). Computer-Aided Breast Cancer Detection Using Mammograms: A Review. IEEE Reviews in Biomedical Engineering, 6, 77-98. doi:10.1109/rbme.2012.2232289

Papadopoulos, A., Fotiadis, D. I., & Costaridou, L. (2008). Improvement of microcalcification cluster detection in mammography utilizing image enhancement techniques. Computers in Biology and Medicine, 38(10), 1045-1055. doi:10.1016/j.compbiomed.2008.07.006

Panetta, K., Yicong Zhou, Agaian, S., & Hongwei Jia. (2011). Nonlinear Unsharp Masking for Mammogram Enhancement. IEEE Transactions on Information Technology in Biomedicine, 15(6), 918-928. doi:10.1109/titb.2011.2164259

Rogowska, J., Preston, K., & Sashin, D. (1988). Evaluation of digital unsharp masking and local contrast stretching as applied to chest radiographs. IEEE Transactions on Biomedical Engineering, 35(10), 817-827. doi:10.1109/10.7288

Ramponi, G. (1998). Rational unsharp masking technique. Journal of Electronic Imaging, 7(2), 333. doi:10.1117/1.482649

Rangayyan, R. M., Liang Shen, Yiping Shen, Desautels, J. E. L., Bryant, H., Terry, T. J., … Rose, M. S. (1997). Improvement of sensitivity of breast cancer diagnosis with adaptive neighborhood contrast enhancement of mammograms. IEEE Transactions on Information Technology in Biomedicine, 1(3), 161-170. doi:10.1109/4233.654859

Tang, J., Liu, X., & Sun, Q. (2009). A Direct Image Contrast Enhancement Algorithm in the Wavelet Domain for Screening Mammograms. IEEE Journal of Selected Topics in Signal Processing, 3(1), 74-80. doi:10.1109/jstsp.2008.2011108

LINGURARU, M., MARIAS, K., ENGLISH, R., & BRADY, M. (2006). A biologically inspired algorithm for microcalcification cluster detection. Medical Image Analysis, 10(6), 850-862. doi:10.1016/j.media.2006.07.004

Tsai, D.-Y., Lee, Y., & Matsuyama, E. (2007). Information Entropy Measure for Evaluation of Image Quality. Journal of Digital Imaging, 21(3), 338-347. doi:10.1007/s10278-007-9044-5

Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on Image Processing, 15(2), 430-444. doi:10.1109/tip.2005.859378

Tourassi, G. D., Vargas-Voracek, R., Catarious, D. M., & Floyd, C. E. (2003). Computer-assisted detection of mammographic masses: A template matching scheme based on mutual information. Medical Physics, 30(8), 2123-2130. doi:10.1118/1.1589494

Tourassi, G. D., Harrawood, B., Singh, S., Lo, J. Y., & Floyd, C. E. (2006). Evaluation of information-theoretic similarity measures for content-based retrieval and detection of masses in mammograms. Medical Physics, 34(1), 140-150. doi:10.1118/1.2401667

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4), 600-612. doi:10.1109/tip.2003.819861

Choi LK Goodall T Bovik AC Perceptual Image Enhancement. Encyclopedia of Image Processing

Fogel, I., & Sagi, D. (1989). Gabor filters as texture discriminator. Biological Cybernetics, 61(2). doi:10.1007/bf00204594

Jain, A. K., Ratha, N. K., & Lakshmanan, S. (1997). Object detection using gabor filters. Pattern Recognition, 30(2), 295-309. doi:10.1016/s0031-3203(96)00068-4

Vazquez-Fernandez, E., Dacal-Nieto, A., Martin, F., & Torres-Guijarro, S. (2010). Entropy of Gabor Filtering for Image Quality Assessment. Image Analysis and Recognition, 52-61. doi:10.1007/978-3-642-13772-3_6

Rangayyan, R. M., Ayres, F. J., & Leo Desautels, J. E. (2007). A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs. Journal of the Franklin Institute, 344(3-4), 312-348. doi:10.1016/j.jfranklin.2006.09.003

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., … Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging, 26(6), 1045-1057. doi:10.1007/s10278-013-9622-7

Task Group 18 Imaging Informatics Subcommittee Assessment of display performance for medical imaging systems 2005

A. C. of Radiology Committee Bi-rads atlas 5th edition 2014

Hochberg, Y., & Benjamini, Y. (1990). More powerful procedures for multiple significance testing. Statistics in Medicine, 9(7), 811-818. doi:10.1002/sim.4780090710

Keselman, H. J., & Keselman, J. C. (1984). The analysis of repeated measures designs in medical research. Statistics in Medicine, 3(2), 185-195. doi:10.1002/sim.4780030211

Mauchly, J. W. (1940). Significance Test for Sphericity of a Normal $n$-Variate Distribution. The Annals of Mathematical Statistics, 11(2), 204-209. doi:10.1214/aoms/1177731915

Samei, E., Badano, A., Chakraborty, D., Compton, K., Cornelius, C., Corrigan, K., … Willis, C. E. (2005). Assessment of display performance for medical imaging systems: Executive summary of AAPM TG18 report. Medical Physics, 32(4), 1205-1225. doi:10.1118/1.1861159

Haghighat, M., Zonouz, S., & Abdel-Mottaleb, M. (2015). CloudID: Trustworthy cloud-based and cross-enterprise biometric identification. Expert Systems with Applications, 42(21), 7905-7916. doi:10.1016/j.eswa.2015.06.025

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem