- -

Recent advances in heart sound analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recent advances in heart sound analysis

Mostrar el registro completo del ítem

Clifford, GD.; Liu, C.; Moody, B.; Millet Roig, J.; Schmidt, S.; Li, Q.; Silva, I.... (2017). Recent advances in heart sound analysis. Physiological Measurement. 38(8):10-25. https://doi.org/10.1088/1361-6579/aa7ec8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152717

Ficheros en el ítem

Metadatos del ítem

Título: Recent advances in heart sound analysis
Autor: Clifford, Gari D. Liu, Chengyu Moody, Benjamin Millet Roig, José Schmidt, Samuel Li, Qiao Silva, Ikaro Mark, Roger G.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Objective: Auscultation of heart sound recordings or the phonocardiogram (PCG) has been shown to be valuable for the detection of disease and pathologies (Leatham 1975, Raghu et al 2015). The automated classification ...[+]
Palabras clave: Heart sound , Signal processing , Physiological , Measurement , Adquisition , Detection
Derechos de uso: Reserva de todos los derechos
Fuente:
Physiological Measurement. (issn: 0967-3334 )
DOI: 10.1088/1361-6579/aa7ec8
Editorial:
IOP Publishing
Versión del editor: https://doi.org/10.1088/1361-6579/aa7ec8
Código del Proyecto:
info:eu-repo/grantAgreement/NIH//R01GM104987/
Descripción: "This is an author-created, un-copyedited versíon of an article published in Physiological Measurement. IOP Publishing Ltd is not responsíble for any errors or omissíons in this versíon of the manuscript or any versíon derived from it. The Versíon of Record is available online at https://doi.org/10.1088/1361-6579/aa7ec8".
Agradecimientos:
This work was funded in part by the National Institutes of Health, grant R01-GM104987, the International Postdoctoral Exchange Programme of the National Postdoctoral Management Committee of China and Emory University. We ...[+]
Tipo: Artículo

References

Abdollahpur, M., Ghaffari, A., Ghiasi, S., & Mollakazemi, M. J. (2017). Detection of pathological heart sounds. Physiological Measurement, 38(8), 1616-1630. doi:10.1088/1361-6579/aa7840

Ari, S., Hembram, K., & Saha, G. (2010). Detection of cardiac abnormality from PCG signal using LMS based least square SVM classifier. Expert Systems with Applications, 37(12), 8019-8026. doi:10.1016/j.eswa.2010.05.088

Chauhan, S., Wang, P., Sing Lim, C., & Anantharaman, V. (2008). A computer-aided MFCC-based HMM system for automatic auscultation. Computers in Biology and Medicine, 38(2), 221-233. doi:10.1016/j.compbiomed.2007.10.006 [+]
Abdollahpur, M., Ghaffari, A., Ghiasi, S., & Mollakazemi, M. J. (2017). Detection of pathological heart sounds. Physiological Measurement, 38(8), 1616-1630. doi:10.1088/1361-6579/aa7840

Ari, S., Hembram, K., & Saha, G. (2010). Detection of cardiac abnormality from PCG signal using LMS based least square SVM classifier. Expert Systems with Applications, 37(12), 8019-8026. doi:10.1016/j.eswa.2010.05.088

Chauhan, S., Wang, P., Sing Lim, C., & Anantharaman, V. (2008). A computer-aided MFCC-based HMM system for automatic auscultation. Computers in Biology and Medicine, 38(2), 221-233. doi:10.1016/j.compbiomed.2007.10.006

Nabhan Homsi, M., & Warrick, P. (2017). Ensemble methods with outliers for phonocardiogram classification. Physiological Measurement, 38(8), 1631-1644. doi:10.1088/1361-6579/aa7982

Kay, E., & Agarwal, A. (2017). DropConnected neural networks trained on time-frequency and inter-beat features for classifying heart sounds. Physiological Measurement, 38(8), 1645-1657. doi:10.1088/1361-6579/aa6a3d

Langley, P., & Murray, A. (2017). Heart sound classification from unsegmented phonocardiograms. Physiological Measurement, 38(8), 1658-1670. doi:10.1088/1361-6579/aa724c

Liu, C., Springer, D., Li, Q., Moody, B., Juan, R. A., Chorro, F. J., … Clifford, G. D. (2016). An open access database for the evaluation of heart sound algorithms. Physiological Measurement, 37(12), 2181-2213. doi:10.1088/0967-3334/37/12/2181

Maknickas, V., & Maknickas, A. (2017). Recognition of normal–abnormal phonocardiographic signals using deep convolutional neural networks and mel-frequency spectral coefficients. Physiological Measurement, 38(8), 1671-1684. doi:10.1088/1361-6579/aa7841

Plesinger, F., Viscor, I., Halamek, J., Jurco, J., & Jurak, P. (2017). Heart sounds analysis using probability assessment. Physiological Measurement, 38(8), 1685-1700. doi:10.1088/1361-6579/aa7620

Da Poian, G., Liu, C., Bernardini, R., Rinaldo, R., & Clifford, G. D. (2017). Atrial fibrillation detection on compressed sensed ECG. Physiological Measurement, 38(7), 1405-1425. doi:10.1088/1361-6579/aa7652

Quiceno-Manrique, A. F., Godino-Llorente, J. I., Blanco-Velasco, M., & Castellanos-Dominguez, G. (2009). Selection of Dynamic Features Based on Time–Frequency Representations for Heart Murmur Detection from Phonocardiographic Signals. Annals of Biomedical Engineering, 38(1), 118-137. doi:10.1007/s10439-009-9838-3

Jull, J., Giles, A., Boyer, Y., & Stacey, D. (2015). Cultural adaptation of a shared decision making tool with Aboriginal women: a qualitative study. BMC Medical Informatics and Decision Making, 15(1). doi:10.1186/s12911-015-0129-7

Saraçoğlu, R. (2012). Hidden Markov model-based classification of heart valve disease with PCA for dimension reduction. Engineering Applications of Artificial Intelligence, 25(7), 1523-1528. doi:10.1016/j.engappai.2012.07.005

Schmidt, S. E., Holst-Hansen, C., Graff, C., Toft, E., & Struijk, J. J. (2010). Segmentation of heart sound recordings by a duration-dependent hidden Markov model. Physiological Measurement, 31(4), 513-529. doi:10.1088/0967-3334/31/4/004

Springer, D. B., Brennan, T., Ntusi, N., Abdelrahman, H. Y., Zühlke, L. J., Mayosi, B. M., … Clifford, G. D. (2016). Automated signal quality assessment of mobile phone-recorded heart sound signals. Journal of Medical Engineering & Technology, 40(7-8), 342-355. doi:10.1080/03091902.2016.1213902

Springer, D., Tarassenko, L., & Clifford, G. (2015). Logistic Regression-HSMM-based Heart Sound Segmentation. IEEE Transactions on Biomedical Engineering, 1-1. doi:10.1109/tbme.2015.2475278

Uğuz, H. (2010). A Biomedical System Based on Artificial Neural Network and Principal Component Analysis for Diagnosis of the Heart Valve Diseases. Journal of Medical Systems, 36(1), 61-72. doi:10.1007/s10916-010-9446-7

Whitaker, B. M., Suresha, P. B., Liu, C., Clifford, G. D., & Anderson, D. V. (2017). Combining sparse coding and time-domain features for heart sound classification. Physiological Measurement, 38(8), 1701-1713. doi:10.1088/1361-6579/aa7623

Zhu, T., Dunkley, N., Behar, J., Clifton, D. A., & Clifford, G. D. (2015). Fusing Continuous-Valued Medical Labels Using a Bayesian Model. Annals of Biomedical Engineering, 43(12), 2892-2902. doi:10.1007/s10439-015-1344-1

Zhu, T., Johnson, A. E. W., Behar, J., & Clifford, G. D. (2013). Crowd-Sourced Annotation of ECG Signals Using Contextual Information. Annals of Biomedical Engineering, 42(4), 871-884. doi:10.1007/s10439-013-0964-6

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem