- -

Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models

Mostrar el registro completo del ítem

Lee, P.; Calvo Saiz, CJ.; Alfonso-Almazán, JM.; Quintanilla, JG.; Chorro Gasco, FJ.; Yan, P.; Loew, LM.... (2017). Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models. Scientific Reports. 7:1-14. https://doi.org/10.1038/srep43217

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152718

Ficheros en el ítem

Metadatos del ítem

Título: Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models
Autor: Lee, Peter Calvo Saiz, Conrado Javier Alfonso-Almazán, José M. Quintanilla, Jorge G. Chorro Gasco, Francisco J. Yan, Ping Loew, Leslie M. Filgueiras-Rama, David Millet Roig, José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple ...[+]
Palabras clave: 3-Dimensional Surface Reconstruction , Persistent Atril-Fibrillation , Tachycardia
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/srep43217
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/srep43217
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F037/ES/ESTUDIO MEDIANTE TÉCNICAS CARTOGRÁFICAS AVANZADAS DE LOS MECANISMOS BÁSICOS IMPLICADOS EN LAS ARRITMIAS MALIGNAS Y EN SU CONTROL/
...[+]
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F037/ES/ESTUDIO MEDIANTE TÉCNICAS CARTOGRÁFICAS AVANZADAS DE LOS MECANISMOS BÁSICOS IMPLICADOS EN LAS ARRITMIAS MALIGNAS Y EN SU CONTROL/
info:eu-repo/grantAgreement/MINECO//SEV-2015-0505/ES/CENTRO NACIONAL DE INVESTIGACIONES CARDIOVASCULARES CARLOS III/
info:eu-repo/grantAgreement/MINECO//CB16%2F11%2F00458/ES/ENFERMEDADES CARDIOVASCULARES/
info:eu-repo/grantAgreement/MINECO//PI15%2F01408/ES/Efectos de la inhibición de la desacetilación de las histonas en el remodelado post-infarto del sustrato arritmogénico/
info:eu-repo/grantAgreement/GVA//GV%2F2015%2F019/
info:eu-repo/grantAgreement/MINECO//PI12%2F00993/ES/Utilidad de la estabilización de la homeostasis del calcio intracelular en el control de los procesos fibrilatorios/
info:eu-repo/grantAgreement/MINECO//PI15%2F00748/ES/Efectos de la inhibición de la desacetilación de las histonas en el remodelado postinfarto del sustrato arritmogénico/
[-]
Agradecimientos:
The CNIC is supported by the Ministry of Economy, Industry and Competitiveness (MINECO) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505). This work was also partially ...[+]
Tipo: Artículo

References

Boukens, B. J. & Efimov, I. R. A century of optocardiography. IEEE Rev. Biomed. Eng. 7, 115–125 (2014).

Herron, T. J., Lee, P. & Jalife, J. Optical imaging of voltage and calcium in cardiac cells & tissues. Circulation Research 110, 609–623 (2012).

Trayanova, N. A. Whole-heart modeling : Applications to cardiac electrophysiology and electromechanics. Circulation Research 108, 113–128 (2011). [+]
Boukens, B. J. & Efimov, I. R. A century of optocardiography. IEEE Rev. Biomed. Eng. 7, 115–125 (2014).

Herron, T. J., Lee, P. & Jalife, J. Optical imaging of voltage and calcium in cardiac cells & tissues. Circulation Research 110, 609–623 (2012).

Trayanova, N. A. Whole-heart modeling : Applications to cardiac electrophysiology and electromechanics. Circulation Research 108, 113–128 (2011).

Lin, S. F. & Wikswo, J. P. Panoramic optical imaging of electrical propagation in isolated heart. J. Biomed. Opt. 4, 200–7 (1999).

Bray, M. A., Lin, S. F. & Wikswo, J. P. Jr, Three-dimensional surface reconstruction and fluorescent visualization of cardiac activation. IEEE Trans. Biomed. Eng. 47, 1382–1391 (2000).

Kay, M. W., Amison, P. M. & Rogers, J. M. Three-dimensional surface reconstruction and panoramic optical mapping of large hearts. IEEE Trans. Biomed. Eng. 51, 1219–1229 (2004).

Ripplinger, C. M., Lou, Q., Li, W., Hadley, J. & Efimov, I. R. Panoramic imaging reveals basic mechanisms of induction and termination of ventricular tachycardia in rabbit heart with chronic infarction: Implications for low-voltage cardioversion. Hear. Rhythm 6, 87–97 (2009).

Mironov, S. F., Vetter, F. J. & Pertsov, A. M. Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials. AJP - Hear. Circ. Physiol. 291, H327–335 (2006).

Chorro, F. J. et al. [Time-frequency analysis of ventricular fibrillation. An experimental study]. Rev. española Cardiol. 59, 869–78 (2006).

Gray, R. a, Pertsov, a M. & Jalife, J. Spatial and temporal organization during cardiac fibrillation. Nature 392, 75–78 (1998).

Kay, M. W. & Rogers, J. M. Epicardial rotors in panoramic optical maps of fibrillating swine ventricles. in Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings 2268–2271 doi: 10.1109/IEMBS.2006.260635 (2006).

Bayly, P. V. et al. A quantitative measurement of spatial order in ventricular fibrillation. J. Cardiovasc. Electrophysiol. 4, 533–46 (1993).

Huang, J. et al. Evolution of the organization of epicardial activation patterns during ventricular fibrillation. J. Cardiovasc. Electrophysiol. 9, 1291–1304 (1998).

Fluhler, E., Burnham, V. G. & Loew, L. M. Spectra, membrane binding, and potentiometric responses of new charge shift probes. Biochemistry 24, 5749–5755 (1985).

Lee, M. H. et al. Effects of diacetyl monoxime and cytochalasin D on ventricular fibrillation in swine right ventricles. Am. J. Physiol. Heart Circ. Physiol. 280, H2689–H2696 (2001).

Evertson, D. W. et al. High-resolution high-speed panoramic cardiac imaging system. IEEE Trans. Biomed. Eng. 55, 1241–1243 (2008).

Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

Choi, B. R. & Salama, G. Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. J. Physiol. 529Pt 1, 171–188 (2000).

Warren, M., Huizar, J. F., Shvedko, A. G. & Zaitsev, A. V. Spatiotemporal relationship between intracellular Ca2+ dynamics and wave fragmentation during ventricular fibrillation in isolated blood-perfused pig hearts. Circ. Res. 101, (2007).

Visweswaran, R., McIntyre, S. D., Ramkrishnan, K., Zhao, X. & Tolkacheva, E. G. Spatiotemporal evolution and prediction of [Ca2+]i and APD alternans in isolated rabbit hearts. J. Cardiovasc. Electrophysiol. 24, 1287–1295 (2013).

Jaimes, R. 3rd et al. A Technical Review of Optical Mapping of Intracellular Calcium within Myocardial Tissue. Am. J. Physiol. Heart Circ. Physiol. ajpheart.00665.2015 (2016). doi: 10.1152/ajpheart.00665.2015.

Himmel, H. M. et al. Field and action potential recordings in heart slices: Correlation with established in vitro and in vivo models. Br. J. Pharmacol. 166, 276–296 (2012).

Levi, a J. & Issberner, J. Effect on the fura-2 transient of rapidly blocking the Ca2+ channel in electrically stimulated rabbit heart cells. J. Physiol. 493, (Pt 1, 19–37 (1996).

Lee, P. et al. Simultaneous measurement and modulation of multiple physiological parameters in the isolated heart using optical techniques. Pflugers Arch. 464, 403–14 (2012).

Kanlop, N. & Sakai, T. Optical mapping study of blebbistatin-induced chaotic electrical activities in isolated rat atrium preparations. J. Physiol. Sci. 60, 109–117 (2010).

Swift, L. M. et al. Properties of blebbistatin for cardiac optical mapping and other imaging applications. Pflugers Arch. Eur. J. Physiol. 464, 503–512 (2012).

Worley, S. J. et al. A new sock electrode for recording epicardial activation from the human heart: One size fits all. PACE - Pacing Clin. Electrophysiol. 10, 21–31 (1987).

Matiukas, A. et al. Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Hear. Rhythm 4, 1441–1451 (2007).

Yan, P. et al. Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc. Natl. Acad. Sci. 109, 20443–20448 (2012).

Filgueiras-Rama, D. et al. Long-term frequency gradients during persistent atrial fibrillation in sheep are associated with stable sources in the left atrium. Circ. Arrhythmia Electrophysiol. 5, 1160–1167 (2012).

Tschabrunn, C. M. et al. A swine model of infarct-related reentrant ventricular tachycardia: Electroanatomic, magnetic resonance, and histopathological characterization. Hear. Rhythm 13, 262–273 (2016).

Martins, R. P. et al. Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation. Circulation 129, 1472–1482 (2014).

Narayan, S. M. et al. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation with or Without Focal Impulse and Rotor Modulation) trial. J. Am. Coll. Cardiol. 60, 628–636 (2012).

Krummen, D. E. et al. Rotor stability separates sustained ventricular fibrillation from self-terminating episodes in humans. J. Am. Coll. Cardiol. 63, 2712–2721 (2014).

Durrer, D. et al. Total excitation of the isolated human heart. Circulation 41, 899–912 (1970).

Downar, E., Harris, L., Mickleborough, L. L., Shaikh, N. & Parson, I. D. Endocardial mapping of ventricular tachycardia in the intact human ventricle: Evidence for reentrant mechanisms. J. Am. Coll. Cardiol. 11, 783–791 (1988).

Jia, P., Punske, B., Taccardi, B. & Rudy, Y. Endocardial mapping of electrophysiologically abnormal substrates and cardiac arrhythmias using a noncontact nonexpandable catheter. J Cardiovasc Electrophysiol 13, 888–895 (2002).

Oster, H. S., Taccardi, B., Lux, R. L., Ershler, P. R. & Rudy, Y. Noninvasive Electrocardiographic Imaging: Reconstruction of Epicardial Potentials, Electrograms, and Isochrones and Localization of Single and Multiple Electrocardiac Events. Circulation 96, 1012–1024 (1997).

Ramanathan, C., Ghanem, R. N., Jia, P., Ryu, K. & Rudy, Y. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat. Med. 10, 422–428 (2004).

Baillargeon, B., Rebelo, N., Fox, D. D., Taylor, R. L. & Kuhl, E. The living heart project: A robust and integrative simulator for human heart function. Eur. J. Mech. A/Solids 48, 38–47 (2014).

Chabiniok, R. et al. Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6, 20150083 (2016).

Lee, P. et al. Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue. Hear. Rhythm 8, 1482–1491 (2011).

Quintanilla, J. G. et al. Increased intraventricular pressures are as harmful as the electrophysiological substrate of heart failure in favoring sustained reentry in the swine heart. Hear. Rhythm 12, 2172–2183 (2015).

Filgueiras-Rama, D. et al. High-Resolution Endocardial and Epicardial Optical Mapping in a Sheep Model of Stretch-Induced Atrial Fibrillation. J. Vis. Exp. 53, 1–7 (2011).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem