- -

Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bergues-Pupo, A.E. es_ES
dc.contributor.author Arias-Gonzalez, J. R. es_ES
dc.contributor.author Moron, M.C. es_ES
dc.contributor.author Fiasconaro, A. es_ES
dc.contributor.author Falo, F. es_ES
dc.date.accessioned 2020-10-22T03:31:55Z
dc.date.available 2020-10-22T03:31:55Z
dc.date.issued 2015-09-03 es_ES
dc.identifier.issn 0305-1048 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152797
dc.description.abstract [EN] Cations are known to mediate diverse interactions in nucleic acids duplexes but they are critical in the arrangement of four-stranded structures. Here, we use all- atom molecular dynamics simulations with explicit solvent to analyze the mechanical unfolding of representative intramolecular G-quadruplex structures: a parallel, an hybrid and an antiparallel DNA and a parallel RNA, in the presence of stabilizing cations. We confirm the stability of these conformations in the presence of K+ central ions and observe distortions from the tetrad topology in their absence. Force-induced unfolding dynamics is then investigated. We show that the unfolding events in the force- extension curves are concomitant to the loss of coordination between the central ions and the guanines of the G- quadruplex. We found lower ruptures forces for the parallel configuration with respect to the antiparallel one, while the behavior of the force pattern of the parallel RNA appears similar to the parallel DNA. We anticipate that our results will be essential to interpret the fine structure rupture profiles in stretching assays at high resolution and will shed light on the mechanochemical activity of G-quadruplex-binding machinery. es_ES
dc.description.sponsorship This work was supported by the Spanish DGICYT Projects No. FIS2011-25167 and FIS2014-55867-P, co-financed by FEDER funds, and by the Gobierno de Aragon through the grant E19 to the FENOL group. Work by J.R. A-G. is supported by an Explora grant (MAT2013-49455-EXP) from MINECO. A.E. Bergues-Pupo also acknowledges the financial support of Universidad de Zaragoza and Banco Santander. A.F. acknowledges the EPSRC project GALE EP/K020633/1. Funding for open access charge: Spanish DGICYT Project No. FIS2011-25167, co-financed by FEDER funds. EPSRC project GALE EP/K020633/1. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Nucleic Acids Research es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject G-quadruplex es_ES
dc.subject DNA es_ES
dc.subject RNA es_ES
dc.subject Cation es_ES
dc.subject Stability es_ES
dc.subject Molecular dynamics es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/nar/gkv690 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-49455-EXP/ES/G-CUADRUPLEX COMO INTERRUPTOR MOLECULAR CONTROLADO POR NANOPARTICULAS Y DEMOSTRADO POR PINZAS OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FK020633%2F1/GB/GALE - Global Accessibility to Local Experience/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2011-25167/ES/REDES, BIOFISICA Y CIENCIA NO LINEAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2014-55867-P/ES/SOCIOBIOTEC: FISICA ESTADISITCA Y NO LINEAL APLICADA A SISTEMAS SOCIALES, BIOLOGICOS Y TECNOLOGICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de Aragón//E19/ES/Fisica Estadistica y No Lineal (GEFENOL)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Bergues-Pupo, A.; Arias-Gonzalez, JR.; Moron, M.; Fiasconaro, A.; Falo, F. (2015). Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes. Nucleic Acids Research. 43(15):7638-7647. https://doi.org/10.1093/nar/gkv690 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/nar/gkv690 es_ES
dc.description.upvformatpinicio 7638 es_ES
dc.description.upvformatpfin 7647 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 15 es_ES
dc.identifier.pmid 26170233 es_ES
dc.identifier.pmcid PMC4551928 es_ES
dc.relation.pasarela S\408014 es_ES
dc.contributor.funder Gobierno de Aragón es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder Universidad de Zaragoza es_ES
dc.contributor.funder Santander Universidades es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.description.references Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K., & Neidle, S. (2006). Quadruplex DNA: sequence, topology and structure. Nucleic Acids Research, 34(19), 5402-5415. doi:10.1093/nar/gkl655 es_ES
dc.description.references Collie, G. W., & Parkinson, G. N. (2011). The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chemical Society Reviews, 40(12), 5867. doi:10.1039/c1cs15067g es_ES
dc.description.references Lim, K. W., Ng, V. C. M., Martín-Pintado, N., Heddi, B., & Phan, A. T. (2013). Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. Nucleic Acids Research, 41(22), 10556-10562. doi:10.1093/nar/gkt771 es_ES
dc.description.references Lam, E. Y. N., Beraldi, D., Tannahill, D., & Balasubramanian, S. (2013). G-quadruplex structures are stable and detectable in human genomic DNA. Nature Communications, 4(1). doi:10.1038/ncomms2792 es_ES
dc.description.references Siddiqui-Jain, A., Grand, C. L., Bearss, D. J., & Hurley, L. H. (2002). Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proceedings of the National Academy of Sciences, 99(18), 11593-11598. doi:10.1073/pnas.182256799 es_ES
dc.description.references Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E., & Lingner, J. (2007). Telomeric Repeat Containing RNA and RNA Surveillance Factors at Mammalian Chromosome Ends. Science, 318(5851), 798-801. doi:10.1126/science.1147182 es_ES
dc.description.references Wieland, M., & Hartig, J. S. (2007). RNA Quadruplex-Based Modulation of Gene Expression. Chemistry & Biology, 14(7), 757-763. doi:10.1016/j.chembiol.2007.06.005 es_ES
dc.description.references Schoeftner, S., & Blasco, M. A. (2007). Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nature Cell Biology, 10(2), 228-236. doi:10.1038/ncb1685 es_ES
dc.description.references Sun, D., Thompson, B., Cathers, B. E., Salazar, M., Kerwin, S. M., Trent, J. O., … Hurley, L. H. (1997). Inhibition of Human Telomerase by a G-Quadruplex-Interactive Compound. Journal of Medicinal Chemistry, 40(14), 2113-2116. doi:10.1021/jm970199z es_ES
dc.description.references Mergny, J.-L., & Hélène, C. (1998). G-quadruplex DNA: A target for drug design. Nature Medicine, 4(12), 1366-1367. doi:10.1038/3949 es_ES
dc.description.references Horard, B., & Gilson, E. (2008). Telomeric RNA enters the game. Nature Cell Biology, 10(2), 113-115. doi:10.1038/ncb0208-113 es_ES
dc.description.references Parkinson, G. N., Lee, M. P. H., & Neidle, S. (2002). Crystal structure of parallel quadruplexes from human telomeric DNA. Nature, 417(6891), 876-880. doi:10.1038/nature755 es_ES
dc.description.references Wang, Y., & Patel, D. J. (1993). Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure, 1(4), 263-282. doi:10.1016/0969-2126(93)90015-9 es_ES
dc.description.references Phan, A. T., Kuryavyi, V., Luu, K. N., & Patel, D. J. (2007). Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K + solution †. Nucleic Acids Research, 35(19), 6517-6525. doi:10.1093/nar/gkm706 es_ES
dc.description.references Dai, J., Carver, M., Punchihewa, C., Jones, R. A., & Yang, D. (2007). Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Research, 35(15), 4927-4940. doi:10.1093/nar/gkm522 es_ES
dc.description.references Dai, J., Carver, M., & Yang, D. (2008). Polymorphism of human telomeric quadruplex structures. Biochimie, 90(8), 1172-1183. doi:10.1016/j.biochi.2008.02.026 es_ES
dc.description.references Dai, J., Punchihewa, C., Ambrus, A., Chen, D., Jones, R. A., & Yang, D. (2007). Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation. Nucleic Acids Research, 35(7), 2440-2450. doi:10.1093/nar/gkm009 es_ES
dc.description.references Martadinata, H., & Phan, A. T. (2009). Structure of Propeller-Type Parallel-Stranded RNA G-Quadruplexes, Formed by Human Telomeric RNA Sequences in K+Solution. Journal of the American Chemical Society, 131(7), 2570-2578. doi:10.1021/ja806592z es_ES
dc.description.references Collie, G. W., Haider, S. M., Neidle, S., & Parkinson, G. N. (2010). A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Research, 38(16), 5569-5580. doi:10.1093/nar/gkq259 es_ES
dc.description.references Garavís, M., Bocanegra, R., Herrero-Galán, E., González, C., Villasante, A., & Arias-Gonzalez, J. R. (2013). Mechanical unfolding of long human telomeric RNA (TERRA). Chemical Communications, 49(57), 6397. doi:10.1039/c3cc42981d es_ES
dc.description.references Koirala, D., Dhakal, S., Ashbridge, B., Sannohe, Y., Rodriguez, R., Sugiyama, H., … Mao, H. (2011). A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nature Chemistry, 3(10), 782-787. doi:10.1038/nchem.1126 es_ES
dc.description.references Yu, Z., Schonhoft, J. D., Dhakal, S., Bajracharya, R., Hegde, R., Basu, S., & Mao, H. (2009). ILPR G-Quadruplexes Formed in Seconds Demonstrate High Mechanical Stabilities. Journal of the American Chemical Society, 131(5), 1876-1882. doi:10.1021/ja806782s es_ES
dc.description.references De Messieres, M., Chang, J.-C., Brawn-Cinani, B., & La Porta, A. (2012). Single-Molecule Study ofG-Quadruplex Disruption Using Dynamic Force Spectroscopy. Physical Review Letters, 109(5). doi:10.1103/physrevlett.109.058101 es_ES
dc.description.references Dhakal, S., Cui, Y., Koirala, D., Ghimire, C., Kushwaha, S., Yu, Z., … Mao, H. (2013). Structural and mechanical properties of individual human telomeric G-quadruplexes in molecularly crowded solutions. Nucleic Acids Research, 41(6), 3915-3923. doi:10.1093/nar/gkt038 es_ES
dc.description.references Yangyuoru, P. M., Zhang, A. Y. Q., Shi, Z., Koirala, D., Balasubramanian, S., & Mao, H. (2013). Mechanochemical Properties of Individual Human Telomeric RNA (TERRA) G-Quadruplexes. ChemBioChem, 14(15), 1931-1935. doi:10.1002/cbic.201300350 es_ES
dc.description.references Arias-Gonzalez, J. R. (2014). Single-molecule portrait of DNA and RNA double helices. Integr. Biol., 6(10), 904-925. doi:10.1039/c4ib00163j es_ES
dc.description.references Lane, A. N. (2012). The stability of intramolecular DNA G-quadruplexes compared with other macromolecules. Biochimie, 94(2), 277-286. doi:10.1016/j.biochi.2011.08.004 es_ES
dc.description.references Gray, R. D., Trent, J. O., & Chaires, J. B. (2014). Folding and Unfolding Pathways of the Human Telomeric G-Quadruplex. Journal of Molecular Biology, 426(8), 1629-1650. doi:10.1016/j.jmb.2014.01.009 es_ES
dc.description.references Mashimo, T., Yagi, H., Sannohe, Y., Rajendran, A., & Sugiyama, H. (2010). Folding Pathways of Human Telomeric Type-1 and Type-2 G-Quadruplex Structures. Journal of the American Chemical Society, 132(42), 14910-14918. doi:10.1021/ja105806u es_ES
dc.description.references Bian, Y., Tan, C., Wang, J., Sheng, Y., Zhang, J., & Wang, W. (2014). Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex. PLoS Computational Biology, 10(4), e1003562. doi:10.1371/journal.pcbi.1003562 es_ES
dc.description.references Špačková, N., Berger, I., & Šponer, J. (1999). Nanosecond Molecular Dynamics Simulations of Parallel and Antiparallel Guanine Quadruplex DNA Molecules. Journal of the American Chemical Society, 121(23), 5519-5534. doi:10.1021/ja984449s es_ES
dc.description.references Li, M.-H., Luo, Q., Xue, X.-G., & Li, Z.-S. (2010). Toward a full structural characterization of G-quadruplex DNA in aqueous solution: Molecular dynamics simulations of four G-quadruplex molecules. Journal of Molecular Structure: THEOCHEM, 952(1-3), 96-102. doi:10.1016/j.theochem.2010.04.035 es_ES
dc.description.references Islam, B., Sgobba, M., Laughton, C., Orozco, M., Sponer, J., Neidle, S., & Haider, S. (2013). Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale. Nucleic Acids Research, 41(4), 2723-2735. doi:10.1093/nar/gks1331 es_ES
dc.description.references Heddi, B., & Phan, A. T. (2011). Structure of Human Telomeric DNA in Crowded Solution. Journal of the American Chemical Society, 133(25), 9824-9833. doi:10.1021/ja200786q es_ES
dc.description.references Martadinata, H., Heddi, B., Lim, K. W., & Phan, A. T. (2011). Structure of Long Human Telomeric RNA (TERRA): G-Quadruplexes Formed by Four and Eight UUAGGG Repeats Are Stable Building Blocks. Biochemistry, 50(29), 6455-6461. doi:10.1021/bi200569f es_ES
dc.description.references Chowdhury, S., & Bansal, M. (2001). G-Quadruplex Structure Can Be Stable with Only Some Coordination Sites Being Occupied by Cations:  A Six-Nanosecond Molecular Dynamics Study. The Journal of Physical Chemistry B, 105(31), 7572-7578. doi:10.1021/jp010929l es_ES
dc.description.references Špačková, N., Berger, I., & Šponer, J. (2001). Structural Dynamics and Cation Interactions of DNA Quadruplex Molecules Containing Mixed Guanine/Cytosine Quartets Revealed by Large-Scale MD Simulations. Journal of the American Chemical Society, 123(14), 3295-3307. doi:10.1021/ja002656y es_ES
dc.description.references Cavallari, M., Calzolari, A., Garbesi, A., & Di Felice, R. (2006). Stability and Migration of Metal Ions in G4-Wires by Molecular Dynamics Simulations. The Journal of Physical Chemistry B, 110(51), 26337-26348. doi:10.1021/jp064522y es_ES
dc.description.references Stadlbauer, P., Krepl, M., Cheatham, T. E., Koca, J., & Sponer, J. (2013). Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Research, 41(14), 7128-7143. doi:10.1093/nar/gkt412 es_ES
dc.description.references Kirkwood, J. G. (1935). Statistical Mechanics of Fluid Mixtures. The Journal of Chemical Physics, 3(5), 300-313. doi:10.1063/1.1749657 es_ES
dc.description.references Hsin, J., Strümpfer, J., Lee, E. H., & Schulten, K. (2011). Molecular Origin of the Hierarchical Elasticity of Titin: Simulation, Experiment, and Theory. Annual Review of Biophysics, 40(1), 187-203. doi:10.1146/annurev-biophys-072110-125325 es_ES
dc.description.references Li, H., Cao, E., & Gisler, T. (2009). Force-induced unfolding of human telomeric G-quadruplex: A steered molecular dynamics simulation study. Biochemical and Biophysical Research Communications, 379(1), 70-75. doi:10.1016/j.bbrc.2008.12.006 es_ES
dc.description.references Yang, C., Jang, S., & Pak, Y. (2011). Multiple stepwise pattern for potential of mean force in unfolding the thrombin binding aptamer in complex with Sr2+. The Journal of Chemical Physics, 135(22), 225104. doi:10.1063/1.3669424 es_ES
dc.description.references Jarzynski, C. (1997). Nonequilibrium Equality for Free Energy Differences. Physical Review Letters, 78(14), 2690-2693. doi:10.1103/physrevlett.78.2690 es_ES
dc.description.references Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38. doi:10.1016/0263-7855(96)00018-5 es_ES
dc.description.references Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 4(3), 435-447. doi:10.1021/ct700301q es_ES
dc.description.references Torrie, G. M., & Valleau, J. P. (1977). Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics, 23(2), 187-199. doi:10.1016/0021-9991(77)90121-8 es_ES
dc.description.references Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H., & Kollman, P. A. (1992). THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry, 13(8), 1011-1021. doi:10.1002/jcc.540130812 es_ES
dc.description.references Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. doi:10.1063/1.2408420 es_ES
dc.description.references Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182-7190. doi:10.1063/1.328693 es_ES
dc.description.references Hub, J. S., de Groot, B. L., & van der Spoel, D. (2010). g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. Journal of Chemical Theory and Computation, 6(12), 3713-3720. doi:10.1021/ct100494z es_ES
dc.description.references Li, W., Hou, X.-M., Wang, P.-Y., Xi, X.-G., & Li, M. (2013). Direct Measurement of Sequential Folding Pathway and Energy Landscape of Human Telomeric G-quadruplex Structures. Journal of the American Chemical Society, 135(17), 6423-6426. doi:10.1021/ja4019176 es_ES
dc.description.references Yurenko, Y. P., Novotný, J., Sklenář, V., & Marek, R. (2014). Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach. Phys. Chem. Chem. Phys., 16(5), 2072-2084. doi:10.1039/c3cp53875c es_ES
dc.description.references Ghimire, C., Park, S., Iida, K., Yangyuoru, P., Otomo, H., Yu, Z., … Mao, H. (2014). Direct Quantification of Loop Interaction and π–π Stacking for G-Quadruplex Stability at the Submolecular Level. Journal of the American Chemical Society, 136(44), 15537-15544. doi:10.1021/ja503585h es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem