Mostrar el registro sencillo del ítem
dc.contributor.author | Bergues-Pupo, A.E. | es_ES |
dc.contributor.author | Arias-Gonzalez, J. R. | es_ES |
dc.contributor.author | Moron, M.C. | es_ES |
dc.contributor.author | Fiasconaro, A. | es_ES |
dc.contributor.author | Falo, F. | es_ES |
dc.date.accessioned | 2020-10-22T03:31:55Z | |
dc.date.available | 2020-10-22T03:31:55Z | |
dc.date.issued | 2015-09-03 | es_ES |
dc.identifier.issn | 0305-1048 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/152797 | |
dc.description.abstract | [EN] Cations are known to mediate diverse interactions in nucleic acids duplexes but they are critical in the arrangement of four-stranded structures. Here, we use all- atom molecular dynamics simulations with explicit solvent to analyze the mechanical unfolding of representative intramolecular G-quadruplex structures: a parallel, an hybrid and an antiparallel DNA and a parallel RNA, in the presence of stabilizing cations. We confirm the stability of these conformations in the presence of K+ central ions and observe distortions from the tetrad topology in their absence. Force-induced unfolding dynamics is then investigated. We show that the unfolding events in the force- extension curves are concomitant to the loss of coordination between the central ions and the guanines of the G- quadruplex. We found lower ruptures forces for the parallel configuration with respect to the antiparallel one, while the behavior of the force pattern of the parallel RNA appears similar to the parallel DNA. We anticipate that our results will be essential to interpret the fine structure rupture profiles in stretching assays at high resolution and will shed light on the mechanochemical activity of G-quadruplex-binding machinery. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish DGICYT Projects No. FIS2011-25167 and FIS2014-55867-P, co-financed by FEDER funds, and by the Gobierno de Aragon through the grant E19 to the FENOL group. Work by J.R. A-G. is supported by an Explora grant (MAT2013-49455-EXP) from MINECO. A.E. Bergues-Pupo also acknowledges the financial support of Universidad de Zaragoza and Banco Santander. A.F. acknowledges the EPSRC project GALE EP/K020633/1. Funding for open access charge: Spanish DGICYT Project No. FIS2011-25167, co-financed by FEDER funds. EPSRC project GALE EP/K020633/1. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Nucleic Acids Research | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | G-quadruplex | es_ES |
dc.subject | DNA | es_ES |
dc.subject | RNA | es_ES |
dc.subject | Cation | es_ES |
dc.subject | Stability | es_ES |
dc.subject | Molecular dynamics | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/nar/gkv690 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2013-49455-EXP/ES/G-CUADRUPLEX COMO INTERRUPTOR MOLECULAR CONTROLADO POR NANOPARTICULAS Y DEMOSTRADO POR PINZAS OPTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//EP%2FK020633%2F1/GB/GALE - Global Accessibility to Local Experience/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2011-25167/ES/REDES, BIOFISICA Y CIENCIA NO LINEAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2014-55867-P/ES/SOCIOBIOTEC: FISICA ESTADISITCA Y NO LINEAL APLICADA A SISTEMAS SOCIALES, BIOLOGICOS Y TECNOLOGICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Gobierno de Aragón//E19/ES/Fisica Estadistica y No Lineal (GEFENOL)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Bergues-Pupo, A.; Arias-Gonzalez, JR.; Moron, M.; Fiasconaro, A.; Falo, F. (2015). Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes. Nucleic Acids Research. 43(15):7638-7647. https://doi.org/10.1093/nar/gkv690 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/nar/gkv690 | es_ES |
dc.description.upvformatpinicio | 7638 | es_ES |
dc.description.upvformatpfin | 7647 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 15 | es_ES |
dc.identifier.pmid | 26170233 | es_ES |
dc.identifier.pmcid | PMC4551928 | es_ES |
dc.relation.pasarela | S\408014 | es_ES |
dc.contributor.funder | Gobierno de Aragón | es_ES |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.contributor.funder | Universidad de Zaragoza | es_ES |
dc.contributor.funder | Santander Universidades | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | es_ES |
dc.description.references | Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K., & Neidle, S. (2006). Quadruplex DNA: sequence, topology and structure. Nucleic Acids Research, 34(19), 5402-5415. doi:10.1093/nar/gkl655 | es_ES |
dc.description.references | Collie, G. W., & Parkinson, G. N. (2011). The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chemical Society Reviews, 40(12), 5867. doi:10.1039/c1cs15067g | es_ES |
dc.description.references | Lim, K. W., Ng, V. C. M., Martín-Pintado, N., Heddi, B., & Phan, A. T. (2013). Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. Nucleic Acids Research, 41(22), 10556-10562. doi:10.1093/nar/gkt771 | es_ES |
dc.description.references | Lam, E. Y. N., Beraldi, D., Tannahill, D., & Balasubramanian, S. (2013). G-quadruplex structures are stable and detectable in human genomic DNA. Nature Communications, 4(1). doi:10.1038/ncomms2792 | es_ES |
dc.description.references | Siddiqui-Jain, A., Grand, C. L., Bearss, D. J., & Hurley, L. H. (2002). Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proceedings of the National Academy of Sciences, 99(18), 11593-11598. doi:10.1073/pnas.182256799 | es_ES |
dc.description.references | Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E., & Lingner, J. (2007). Telomeric Repeat Containing RNA and RNA Surveillance Factors at Mammalian Chromosome Ends. Science, 318(5851), 798-801. doi:10.1126/science.1147182 | es_ES |
dc.description.references | Wieland, M., & Hartig, J. S. (2007). RNA Quadruplex-Based Modulation of Gene Expression. Chemistry & Biology, 14(7), 757-763. doi:10.1016/j.chembiol.2007.06.005 | es_ES |
dc.description.references | Schoeftner, S., & Blasco, M. A. (2007). Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nature Cell Biology, 10(2), 228-236. doi:10.1038/ncb1685 | es_ES |
dc.description.references | Sun, D., Thompson, B., Cathers, B. E., Salazar, M., Kerwin, S. M., Trent, J. O., … Hurley, L. H. (1997). Inhibition of Human Telomerase by a G-Quadruplex-Interactive Compound. Journal of Medicinal Chemistry, 40(14), 2113-2116. doi:10.1021/jm970199z | es_ES |
dc.description.references | Mergny, J.-L., & Hélène, C. (1998). G-quadruplex DNA: A target for drug design. Nature Medicine, 4(12), 1366-1367. doi:10.1038/3949 | es_ES |
dc.description.references | Horard, B., & Gilson, E. (2008). Telomeric RNA enters the game. Nature Cell Biology, 10(2), 113-115. doi:10.1038/ncb0208-113 | es_ES |
dc.description.references | Parkinson, G. N., Lee, M. P. H., & Neidle, S. (2002). Crystal structure of parallel quadruplexes from human telomeric DNA. Nature, 417(6891), 876-880. doi:10.1038/nature755 | es_ES |
dc.description.references | Wang, Y., & Patel, D. J. (1993). Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure, 1(4), 263-282. doi:10.1016/0969-2126(93)90015-9 | es_ES |
dc.description.references | Phan, A. T., Kuryavyi, V., Luu, K. N., & Patel, D. J. (2007). Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K + solution †. Nucleic Acids Research, 35(19), 6517-6525. doi:10.1093/nar/gkm706 | es_ES |
dc.description.references | Dai, J., Carver, M., Punchihewa, C., Jones, R. A., & Yang, D. (2007). Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Research, 35(15), 4927-4940. doi:10.1093/nar/gkm522 | es_ES |
dc.description.references | Dai, J., Carver, M., & Yang, D. (2008). Polymorphism of human telomeric quadruplex structures. Biochimie, 90(8), 1172-1183. doi:10.1016/j.biochi.2008.02.026 | es_ES |
dc.description.references | Dai, J., Punchihewa, C., Ambrus, A., Chen, D., Jones, R. A., & Yang, D. (2007). Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation. Nucleic Acids Research, 35(7), 2440-2450. doi:10.1093/nar/gkm009 | es_ES |
dc.description.references | Martadinata, H., & Phan, A. T. (2009). Structure of Propeller-Type Parallel-Stranded RNA G-Quadruplexes, Formed by Human Telomeric RNA Sequences in K+Solution. Journal of the American Chemical Society, 131(7), 2570-2578. doi:10.1021/ja806592z | es_ES |
dc.description.references | Collie, G. W., Haider, S. M., Neidle, S., & Parkinson, G. N. (2010). A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Research, 38(16), 5569-5580. doi:10.1093/nar/gkq259 | es_ES |
dc.description.references | Garavís, M., Bocanegra, R., Herrero-Galán, E., González, C., Villasante, A., & Arias-Gonzalez, J. R. (2013). Mechanical unfolding of long human telomeric RNA (TERRA). Chemical Communications, 49(57), 6397. doi:10.1039/c3cc42981d | es_ES |
dc.description.references | Koirala, D., Dhakal, S., Ashbridge, B., Sannohe, Y., Rodriguez, R., Sugiyama, H., … Mao, H. (2011). A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nature Chemistry, 3(10), 782-787. doi:10.1038/nchem.1126 | es_ES |
dc.description.references | Yu, Z., Schonhoft, J. D., Dhakal, S., Bajracharya, R., Hegde, R., Basu, S., & Mao, H. (2009). ILPR G-Quadruplexes Formed in Seconds Demonstrate High Mechanical Stabilities. Journal of the American Chemical Society, 131(5), 1876-1882. doi:10.1021/ja806782s | es_ES |
dc.description.references | De Messieres, M., Chang, J.-C., Brawn-Cinani, B., & La Porta, A. (2012). Single-Molecule Study ofG-Quadruplex Disruption Using Dynamic Force Spectroscopy. Physical Review Letters, 109(5). doi:10.1103/physrevlett.109.058101 | es_ES |
dc.description.references | Dhakal, S., Cui, Y., Koirala, D., Ghimire, C., Kushwaha, S., Yu, Z., … Mao, H. (2013). Structural and mechanical properties of individual human telomeric G-quadruplexes in molecularly crowded solutions. Nucleic Acids Research, 41(6), 3915-3923. doi:10.1093/nar/gkt038 | es_ES |
dc.description.references | Yangyuoru, P. M., Zhang, A. Y. Q., Shi, Z., Koirala, D., Balasubramanian, S., & Mao, H. (2013). Mechanochemical Properties of Individual Human Telomeric RNA (TERRA) G-Quadruplexes. ChemBioChem, 14(15), 1931-1935. doi:10.1002/cbic.201300350 | es_ES |
dc.description.references | Arias-Gonzalez, J. R. (2014). Single-molecule portrait of DNA and RNA double helices. Integr. Biol., 6(10), 904-925. doi:10.1039/c4ib00163j | es_ES |
dc.description.references | Lane, A. N. (2012). The stability of intramolecular DNA G-quadruplexes compared with other macromolecules. Biochimie, 94(2), 277-286. doi:10.1016/j.biochi.2011.08.004 | es_ES |
dc.description.references | Gray, R. D., Trent, J. O., & Chaires, J. B. (2014). Folding and Unfolding Pathways of the Human Telomeric G-Quadruplex. Journal of Molecular Biology, 426(8), 1629-1650. doi:10.1016/j.jmb.2014.01.009 | es_ES |
dc.description.references | Mashimo, T., Yagi, H., Sannohe, Y., Rajendran, A., & Sugiyama, H. (2010). Folding Pathways of Human Telomeric Type-1 and Type-2 G-Quadruplex Structures. Journal of the American Chemical Society, 132(42), 14910-14918. doi:10.1021/ja105806u | es_ES |
dc.description.references | Bian, Y., Tan, C., Wang, J., Sheng, Y., Zhang, J., & Wang, W. (2014). Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex. PLoS Computational Biology, 10(4), e1003562. doi:10.1371/journal.pcbi.1003562 | es_ES |
dc.description.references | Špačková, N., Berger, I., & Šponer, J. (1999). Nanosecond Molecular Dynamics Simulations of Parallel and Antiparallel Guanine Quadruplex DNA Molecules. Journal of the American Chemical Society, 121(23), 5519-5534. doi:10.1021/ja984449s | es_ES |
dc.description.references | Li, M.-H., Luo, Q., Xue, X.-G., & Li, Z.-S. (2010). Toward a full structural characterization of G-quadruplex DNA in aqueous solution: Molecular dynamics simulations of four G-quadruplex molecules. Journal of Molecular Structure: THEOCHEM, 952(1-3), 96-102. doi:10.1016/j.theochem.2010.04.035 | es_ES |
dc.description.references | Islam, B., Sgobba, M., Laughton, C., Orozco, M., Sponer, J., Neidle, S., & Haider, S. (2013). Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale. Nucleic Acids Research, 41(4), 2723-2735. doi:10.1093/nar/gks1331 | es_ES |
dc.description.references | Heddi, B., & Phan, A. T. (2011). Structure of Human Telomeric DNA in Crowded Solution. Journal of the American Chemical Society, 133(25), 9824-9833. doi:10.1021/ja200786q | es_ES |
dc.description.references | Martadinata, H., Heddi, B., Lim, K. W., & Phan, A. T. (2011). Structure of Long Human Telomeric RNA (TERRA): G-Quadruplexes Formed by Four and Eight UUAGGG Repeats Are Stable Building Blocks. Biochemistry, 50(29), 6455-6461. doi:10.1021/bi200569f | es_ES |
dc.description.references | Chowdhury, S., & Bansal, M. (2001). G-Quadruplex Structure Can Be Stable with Only Some Coordination Sites Being Occupied by Cations: A Six-Nanosecond Molecular Dynamics Study. The Journal of Physical Chemistry B, 105(31), 7572-7578. doi:10.1021/jp010929l | es_ES |
dc.description.references | Špačková, N., Berger, I., & Šponer, J. (2001). Structural Dynamics and Cation Interactions of DNA Quadruplex Molecules Containing Mixed Guanine/Cytosine Quartets Revealed by Large-Scale MD Simulations. Journal of the American Chemical Society, 123(14), 3295-3307. doi:10.1021/ja002656y | es_ES |
dc.description.references | Cavallari, M., Calzolari, A., Garbesi, A., & Di Felice, R. (2006). Stability and Migration of Metal Ions in G4-Wires by Molecular Dynamics Simulations. The Journal of Physical Chemistry B, 110(51), 26337-26348. doi:10.1021/jp064522y | es_ES |
dc.description.references | Stadlbauer, P., Krepl, M., Cheatham, T. E., Koca, J., & Sponer, J. (2013). Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Research, 41(14), 7128-7143. doi:10.1093/nar/gkt412 | es_ES |
dc.description.references | Kirkwood, J. G. (1935). Statistical Mechanics of Fluid Mixtures. The Journal of Chemical Physics, 3(5), 300-313. doi:10.1063/1.1749657 | es_ES |
dc.description.references | Hsin, J., Strümpfer, J., Lee, E. H., & Schulten, K. (2011). Molecular Origin of the Hierarchical Elasticity of Titin: Simulation, Experiment, and Theory. Annual Review of Biophysics, 40(1), 187-203. doi:10.1146/annurev-biophys-072110-125325 | es_ES |
dc.description.references | Li, H., Cao, E., & Gisler, T. (2009). Force-induced unfolding of human telomeric G-quadruplex: A steered molecular dynamics simulation study. Biochemical and Biophysical Research Communications, 379(1), 70-75. doi:10.1016/j.bbrc.2008.12.006 | es_ES |
dc.description.references | Yang, C., Jang, S., & Pak, Y. (2011). Multiple stepwise pattern for potential of mean force in unfolding the thrombin binding aptamer in complex with Sr2+. The Journal of Chemical Physics, 135(22), 225104. doi:10.1063/1.3669424 | es_ES |
dc.description.references | Jarzynski, C. (1997). Nonequilibrium Equality for Free Energy Differences. Physical Review Letters, 78(14), 2690-2693. doi:10.1103/physrevlett.78.2690 | es_ES |
dc.description.references | Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38. doi:10.1016/0263-7855(96)00018-5 | es_ES |
dc.description.references | Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 4(3), 435-447. doi:10.1021/ct700301q | es_ES |
dc.description.references | Torrie, G. M., & Valleau, J. P. (1977). Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics, 23(2), 187-199. doi:10.1016/0021-9991(77)90121-8 | es_ES |
dc.description.references | Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H., & Kollman, P. A. (1992). THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry, 13(8), 1011-1021. doi:10.1002/jcc.540130812 | es_ES |
dc.description.references | Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. doi:10.1063/1.2408420 | es_ES |
dc.description.references | Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182-7190. doi:10.1063/1.328693 | es_ES |
dc.description.references | Hub, J. S., de Groot, B. L., & van der Spoel, D. (2010). g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. Journal of Chemical Theory and Computation, 6(12), 3713-3720. doi:10.1021/ct100494z | es_ES |
dc.description.references | Li, W., Hou, X.-M., Wang, P.-Y., Xi, X.-G., & Li, M. (2013). Direct Measurement of Sequential Folding Pathway and Energy Landscape of Human Telomeric G-quadruplex Structures. Journal of the American Chemical Society, 135(17), 6423-6426. doi:10.1021/ja4019176 | es_ES |
dc.description.references | Yurenko, Y. P., Novotný, J., Sklenář, V., & Marek, R. (2014). Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach. Phys. Chem. Chem. Phys., 16(5), 2072-2084. doi:10.1039/c3cp53875c | es_ES |
dc.description.references | Ghimire, C., Park, S., Iida, K., Yangyuoru, P., Otomo, H., Yu, Z., … Mao, H. (2014). Direct Quantification of Loop Interaction and π–π Stacking for G-Quadruplex Stability at the Submolecular Level. Journal of the American Chemical Society, 136(44), 15537-15544. doi:10.1021/ja503585h | es_ES |