- -

Influence of Zinc Content in Ternary ZnCdS Films Deposited by Chemical Bath Deposition for Photovoltaic Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Zinc Content in Ternary ZnCdS Films Deposited by Chemical Bath Deposition for Photovoltaic Applications

Mostrar el registro completo del ítem

Ullah, S.; Ullah, H.; Bouhjar, F.; Mollar García, MA.; Marí, B.; Chahboun, A. (2018). Influence of Zinc Content in Ternary ZnCdS Films Deposited by Chemical Bath Deposition for Photovoltaic Applications. Journal of The Electrochemical Society. 7(8):P345-P349. https://doi.org/10.1149/2.0021808jss

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152803

Ficheros en el ítem

Metadatos del ítem

Título: Influence of Zinc Content in Ternary ZnCdS Films Deposited by Chemical Bath Deposition for Photovoltaic Applications
Autor: Ullah, Shafi Ullah, Hanif Bouhjar, F. Mollar García, Miguel Alfonso Marí, B. Chahboun, Adil
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Cadmium Zinc Sulfide thin films with different Zn concentration were synthesized in aqueous solution by chemical bath deposition (CBD) method using CdSO4, ZnSO4, CH4N2S for Cd+2, Zn+2, and S¿2 ions source, respectively. ...[+]
Palabras clave: Band Gap , Photo electrochemical Analysis , Chemical Bath Deposition , ZnCdS , XRD , AFM
Derechos de uso: Cerrado
Fuente:
Journal of The Electrochemical Society. (issn: 0013-4651 )
DOI: 10.1149/2.0021808jss
Editorial:
The Electrochemical Society
Versión del editor: https://doi.org/10.1149/2.0021808jss
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F044/ES/Técnicas de Fabricación Avanzada y Control de Calidad de nuevos materiales multifuncionales en movilidad sostenible/
info:eu-repo/grantAgreement/MINECO//ENE2013-46624-C4-4-R/ES/MEJORA DE LA CONVERSION DE ENERGIA SOLAR MEDIANTE PROCESOS DE EXCITACION ELECTRONICA EN DOS ETAPAS. APROXIMACION ELECTROQUIMICA./
info:eu-repo/grantAgreement/MINECO//ENE2016-77798-C4-2-R/ES/APROVECHAMIENTO DE LA LUZ SOLAR CON PROCESOS DE DOS FOTONES-TF/
Agradecimientos:
This work was supported by Ministerio de Economia y Competitividad (ENE2013-46624-C4-4-R) and Generalitat Valenciana (Prometeus 2014/044). The Universitat Politecnica de Valencia, Coordinator of the Erasmus + KA 107 ...[+]
Tipo: Artículo

References

Kumar, T. P., Saravanakumar, S., & Sankaranarayanan, K. (2011). Effect of annealing on the surface and band gap alignment of CdZnS thin films. Applied Surface Science, 257(6), 1923-1927. doi:10.1016/j.apsusc.2010.09.027

XING, C., ZHANG, Y., YAN, W., & GUO, L. (2006). Band structure-controlled solid solution of Cd1-xCd1-x ZnxSZnxS photocatalyst for hydrogen production by water splitting. International Journal of Hydrogen Energy, 31(14), 2018-2024. doi:10.1016/j.ijhydene.2006.02.003

Horoz, S., Dai, Q., Maloney, F. S., Yakami, B., Pikal, J. M., Zhang, X., … Tang, J. (2015). Absorption Induced by Mn Doping of ZnS for Improved Sensitized Quantum-Dot Solar Cells. Physical Review Applied, 3(2). doi:10.1103/physrevapplied.3.024011 [+]
Kumar, T. P., Saravanakumar, S., & Sankaranarayanan, K. (2011). Effect of annealing on the surface and band gap alignment of CdZnS thin films. Applied Surface Science, 257(6), 1923-1927. doi:10.1016/j.apsusc.2010.09.027

XING, C., ZHANG, Y., YAN, W., & GUO, L. (2006). Band structure-controlled solid solution of Cd1-xCd1-x ZnxSZnxS photocatalyst for hydrogen production by water splitting. International Journal of Hydrogen Energy, 31(14), 2018-2024. doi:10.1016/j.ijhydene.2006.02.003

Horoz, S., Dai, Q., Maloney, F. S., Yakami, B., Pikal, J. M., Zhang, X., … Tang, J. (2015). Absorption Induced by Mn Doping of ZnS for Improved Sensitized Quantum-Dot Solar Cells. Physical Review Applied, 3(2). doi:10.1103/physrevapplied.3.024011

Santra, P. K., & Kamat, P. V. (2012). Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%. Journal of the American Chemical Society, 134(5), 2508-2511. doi:10.1021/ja211224s

Salem, J. K., Hammad, T. M., Kuhn, S., Draaz, M. A., Hejazy, N. K., & Hempelmann, R. (2014). Structural and optical properties of Co-doped ZnS nanoparticles synthesized by a capping agent. Journal of Materials Science: Materials in Electronics, 25(5), 2177-2182. doi:10.1007/s10854-014-1856-8

Liu, H.-J., & Zhu, Y.-C. (2008). Synthesis and characterization of ternary chalcogenide ZnCdS 1D nanostructures. Materials Letters, 62(2), 255-257. doi:10.1016/j.matlet.2007.05.011

Kumar, B., Vasekar, P., Pethe, S. A., Dhere, N. G., & Koishiyev, G. T. (2009). ZnxCd1−xS as a heterojunction partner for CuIn1−xGaxS2 thin film solar cells. Thin Solid Films, 517(7), 2295-2299. doi:10.1016/j.tsf.2008.10.108

Dawoud, B., Amer, E.-H., & Gross, D.-M. (2007). Experimental investigation of an adsorptive thermal energy storage. International Journal of Energy Research, 31(2), 135-147. doi:10.1002/er.1235

Baykul, M. C., & Orhan, N. (2010). Band alignment of Cd(1−x)ZnxS produced by spray pyrolysis method. Thin Solid Films, 518(8), 1925-1928. doi:10.1016/j.tsf.2009.07.142

Clayton, A. J., Baker, M. A., Babar, S., Grilli, R., Gibson, P. N., Kartopu, G., … Irvine, S. J. C. (2017). Effects of Cd 1-x Zn x S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVD. Materials Chemistry and Physics, 192, 244-252. doi:10.1016/j.matchemphys.2017.01.067

Levchuk, I., Würth, C., Krause, F., Osvet, A., Batentschuk, M., Resch-Genger, U., … Brabec, C. J. (2016). Industrially scalable and cost-effective Mn2+ doped ZnxCd1−xS/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. Energy & Environmental Science, 9(3), 1083-1094. doi:10.1039/c5ee03165f

Bhattacharya, R. N., Ramanathan, K., Gedvilas, L., & Keyes, B. (2005). Cu(In,Ga)Se2 thin-film solar cells with ZnS(O,OH), Zn–Cd–S(O,OH), and CdS buffer layers. Journal of Physics and Chemistry of Solids, 66(11), 1862-1864. doi:10.1016/j.jpcs.2005.09.006

Reynolds, J. E. (1869). I.—On the isolation of the missing sulphur urea. J. Chem. Soc., 22(0), 1-15. doi:10.1039/js8692200001

García-Valenzuela, J. A. (2016). Simple Thiourea Hydrolysis or Intermediate Complex Mechanism? Taking up the Formation of Metal Sulfides from Metal–Thiourea Alkaline Solutions. Comments on Inorganic Chemistry, 37(2), 99-115. doi:10.1080/02603594.2016.1230547

Jaramillo, T. F., Baeck, S.-H., Kleiman-Shwarsctein, A., Choi, K.-S., Stucky, G. D., & McFarland, E. W. (2005). Automated Electrochemical Synthesis and Photoelectrochemical Characterization of Zn1-xCoxO Thin Films for Solar Hydrogen Production. Journal of Combinatorial Chemistry, 7(2), 264-271. doi:10.1021/cc049864x

Jaramillo, T. F., Baeck, S.-H., Kleiman-Shwarsctein, A., & McFarland, E. W. (2004). Combinatorial Electrochemical Synthesis and Screening of Mesoporous ZnO for Photocatalysis. Macromolecular Rapid Communications, 25(1), 297-301. doi:10.1002/marc.200300187

Phuan, Y. W., Ibrahim, E., Chong, M. N., Zhu, T., Lee, B.-K., Ocon, J. D., & Chan, E. S. (2017). In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode. Applied Surface Science, 392, 144-152. doi:10.1016/j.apsusc.2016.09.046

Hossain, M. S., Islam, M. A., Huda, Q., Aliyu, M. M., Razykov, T., Alam, M. M., … Amin, N. (2013). Growth optimization of ZnxCd1−xS thin films by radio frequency magnetron co-sputtering for solar cell applications. Thin Solid Films, 548, 202-209. doi:10.1016/j.tsf.2013.09.061

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem