- -

A Heterogeneous Carbon Nitride Nickel Photocatalyst for Efficient Low-Temperature CO2 Methanation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Heterogeneous Carbon Nitride Nickel Photocatalyst for Efficient Low-Temperature CO2 Methanation

Mostrar el registro completo del ítem

Barrio, J.; Mateo-Mateo, D.; Albero-Sancho, J.; García Gómez, H.; Shalom, M. (2019). A Heterogeneous Carbon Nitride Nickel Photocatalyst for Efficient Low-Temperature CO2 Methanation. Advanced energy materials (Online). 9(44):1-7. https://doi.org/10.1002/aenm.201902738

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153223

Ficheros en el ítem

Metadatos del ítem

Título: A Heterogeneous Carbon Nitride Nickel Photocatalyst for Efficient Low-Temperature CO2 Methanation
Autor: Barrio, Jesus Mateo-Mateo, Diego Albero-Sancho, Josep García Gómez, Hermenegildo Shalom, Menny
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] The Sabatier reaction, i.e., the hydrogenation of CO2 to methane (CH4) using hydrogen (H-2), constitutes a potentially scalable method to store energy in a product with a high energy density. However, up to today, ...[+]
Palabras clave: Carbon nitride , CO2 reduction , Ni nanoparticles , Photocatalysis , Sabatier reaction
Derechos de uso: Cerrado
Fuente:
Advanced energy materials (Online). (eissn: 1614-6840 )
DOI: 10.1002/aenm.201902738
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/aenm.201902738
Código del Proyecto:
info:eu-repo/grantAgreement/ISF//1161%2F17/
info:eu-repo/grantAgreement/Minerva Foundation//117873/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/
MINECO/CTQ2015-69563-CO2-R1
Agradecimientos:
J.B. and D.M. contributed equally to this work. The authors would like to thank the technical staff of the Instituto de Tecnología Química for assistance with the experimental characterization. This research was funded by ...[+]
Tipo: Artículo

References

Dau, H., Fujita, E., & Sun, L. (2017). Artificial Photosynthesis: Beyond Mimicking Nature. ChemSusChem, 10(22), 4228-4235. doi:10.1002/cssc.201702106

Detz, R. J., Reek, J. N. H., & van der Zwaan, B. C. C. (2018). The future of solar fuels: when could they become competitive? Energy & Environmental Science, 11(7), 1653-1669. doi:10.1039/c8ee00111a

Corma, A., & Garcia, H. (2013). Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. Journal of Catalysis, 308, 168-175. doi:10.1016/j.jcat.2013.06.008 [+]
Dau, H., Fujita, E., & Sun, L. (2017). Artificial Photosynthesis: Beyond Mimicking Nature. ChemSusChem, 10(22), 4228-4235. doi:10.1002/cssc.201702106

Detz, R. J., Reek, J. N. H., & van der Zwaan, B. C. C. (2018). The future of solar fuels: when could they become competitive? Energy & Environmental Science, 11(7), 1653-1669. doi:10.1039/c8ee00111a

Corma, A., & Garcia, H. (2013). Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. Journal of Catalysis, 308, 168-175. doi:10.1016/j.jcat.2013.06.008

Remiro‐Buenamañana, S., & García, H. (2018). Photoassisted CO2Conversion to Fuels. ChemCatChem, 11(1), 342-356. doi:10.1002/cctc.201801409

Li, K., Peng, B., & Peng, T. (2016). Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catalysis, 6(11), 7485-7527. doi:10.1021/acscatal.6b02089

Habisreutinger, S. N., Schmidt-Mende, L., & Stolarczyk, J. K. (2013). Photocatalytic Reduction of CO2on TiO2and Other Semiconductors. Angewandte Chemie International Edition, 52(29), 7372-7408. doi:10.1002/anie.201207199

Brooks, K. P., Hu, J., Zhu, H., & Kee, R. J. (2007). Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chemical Engineering Science, 62(4), 1161-1170. doi:10.1016/j.ces.2006.11.020

Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X., & Song, C. (2018). A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 8(14), 7651-7669. doi:10.1039/c7ra13546g

Ulmer, U., Dingle, T., Duchesne, P. N., Morris, R. H., Tavasoli, A., Wood, T., & Ozin, G. A. (2019). Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 10(1). doi:10.1038/s41467-019-10996-2

Aziz, M. A. A., Jalil, A. A., Triwahyono, S., Mukti, R. R., Taufiq-Yap, Y. H., & Sazegar, M. R. (2014). Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Applied Catalysis B: Environmental, 147, 359-368. doi:10.1016/j.apcatb.2013.09.015

Sharma, S., Hu, Z., Zhang, P., McFarland, E. W., & Metiu, H. (2011). CO2 methanation on Ru-doped ceria. Journal of Catalysis, 278(2), 297-309. doi:10.1016/j.jcat.2010.12.015

Gao, J., Liu, Q., Gu, F., Liu, B., Zhong, Z., & Su, F. (2015). Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Advances, 5(29), 22759-22776. doi:10.1039/c4ra16114a

Chen, Y., Long, J., & Li, Z. (2019). Efficient Photothermal CO2 Methanation over RuO2/SrTiO3. Trends in Chemistry, 1(5), 459-460. doi:10.1016/j.trechm.2019.06.005

Mateo, D., Albero, J., & García, H. (2019). Titanium-Perovskite-Supported RuO2 Nanoparticles for Photocatalytic CO2 Methanation. Joule, 3(8), 1949-1962. doi:10.1016/j.joule.2019.06.001

Mateo, D., De Masi, D., Albero, J., Lacroix, L., Fazzini, P., Chaudret, B., & García, H. (2018). Synergism of Au and Ru Nanoparticles in Low‐Temperature Photoassisted CO 2 Methanation. Chemistry – A European Journal, 24(69), 18436-18443. doi:10.1002/chem.201803022

Zhou, Z., Zhang, Y., Shen, Y., Liu, S., & Zhang, Y. (2018). Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chemical Society Reviews, 47(7), 2298-2321. doi:10.1039/c7cs00840f

Ren, Y., Zeng, D., & Ong, W.-J. (2019). Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chinese Journal of Catalysis, 40(3), 289-319. doi:10.1016/s1872-2067(19)63293-6

Zhao, G., Yang, H., Liu, M., & Xu, X. (2018). Metal-Free Graphitic Carbon Nitride Photocatalyst Goes Into Two-Dimensional Time. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00551

Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., … Antonietti, M. (2008). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76-80. doi:10.1038/nmat2317

Yang, Y., Wang, S., Li, Y., Wang, J., & Wang, L. (2017). Strategies for Efficient Solar Water Splitting Using Carbon Nitride. Chemistry - An Asian Journal, 12(13), 1421-1434. doi:10.1002/asia.201700540

Volokh, M., Peng, G., Barrio, J., & Shalom, M. (2019). Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells. Angewandte Chemie International Edition, 58(19), 6138-6151. doi:10.1002/anie.201806514

Xu, J., Brenner, T. J. K., Chabanne, L., Neher, D., Antonietti, M., & Shalom, M. (2014). Liquid-Based Growth of Polymeric Carbon Nitride Layers and Their Use in a Mesostructured Polymer Solar Cell with Voc Exceeding 1 V. Journal of the American Chemical Society, 136(39), 13486-13489. doi:10.1021/ja508329c

Safaei, J., Mohamed, N. A., Mohamad Noh, M. F., Soh, M. F., Ludin, N. A., Ibrahim, M. A., … Mat Teridi, M. A. (2018). Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors. Journal of Materials Chemistry A, 6(45), 22346-22380. doi:10.1039/c8ta08001a

Xu, J., Shalom, M., Piersimoni, F., Antonietti, M., Neher, D., & Brenner, T. J. K. (2015). Color-Tunable Photoluminescence and NIR Electroluminescence in Carbon Nitride Thin Films and Light-Emitting Diodes. Advanced Optical Materials, 3(7), 913-917. doi:10.1002/adom.201500019

Zheng, Q., Durkin, D. P., Elenewski, J. E., Sun, Y., Banek, N. A., Hua, L., … Shuai, D. (2016). Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications for Water Treatment. Environmental Science & Technology, 50(23), 12938-12948. doi:10.1021/acs.est.6b02579

Barrio, J., & Shalom, M. (2018). Ultralong Nanostructured Carbon Nitride Wires and Self-Standing C-Rich Filters from Supramolecular Microspheres. ACS Applied Materials & Interfaces, 10(46), 39688-39694. doi:10.1021/acsami.8b13873

Chen, L., & Song, J. (2017). Tailored Graphitic Carbon Nitride Nanostructures: Synthesis, Modification, and Sensing Applications. Advanced Functional Materials, 27(39), 1702695. doi:10.1002/adfm.201702695

Lin, J., Pan, Z., & Wang, X. (2013). Photochemical Reduction of CO2 by Graphitic Carbon Nitride Polymers. ACS Sustainable Chemistry & Engineering, 2(3), 353-358. doi:10.1021/sc4004295

Tada, S., Shimizu, T., Kameyama, H., Haneda, T., & Kikuchi, R. (2012). Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. International Journal of Hydrogen Energy, 37(7), 5527-5531. doi:10.1016/j.ijhydene.2011.12.122

Karelovic, A., & Ruiz, P. (2013). Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. Journal of Catalysis, 301, 141-153. doi:10.1016/j.jcat.2013.02.009

Tada, S., Ochieng, O. J., Kikuchi, R., Haneda, T., & Kameyama, H. (2014). Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts. International Journal of Hydrogen Energy, 39(19), 10090-10100. doi:10.1016/j.ijhydene.2014.04.133

Shalom, M., Ressnig, D., Yang, X., Clavel, G., Fellinger, T. P., & Antonietti, M. (2015). Nickel nitride as an efficient electrocatalyst for water splitting. Journal of Materials Chemistry A, 3(15), 8171-8177. doi:10.1039/c5ta00078e

Singh, M. K., Agarwal, A., Gopal, R., Swarnkar, R. K., & Kotnala, R. K. (2011). Dumbbell shaped nickel nanocrystals synthesized by a laser induced fragmentation method. Journal of Materials Chemistry, 21(30), 11074. doi:10.1039/c1jm12320c

Mateo, D., Albero, J., & García, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science, 10(11), 2392-2400. doi:10.1039/c7ee02287e

Kopyscinski, J., Schildhauer, T. J., Vogel, F., Biollaz, S. M. A., & Wokaun, A. (2010). Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation. Journal of Catalysis, 271(2), 262-279. doi:10.1016/j.jcat.2010.02.008

Lu, B., & Kawamoto, K. (2014). Transition metal-rich mesoporous silicas and their enhanced catalytic properties. Catal. Sci. Technol., 4(12), 4313-4321. doi:10.1039/c4cy00688g

Kwak, J. H., Kovarik, L., & Szanyi, J. (2013). CO2 Reduction on Supported Ru/Al2O3 Catalysts: Cluster Size Dependence of Product Selectivity. ACS Catalysis, 3(11), 2449-2455. doi:10.1021/cs400381f

Mateo, D., Albero, J., & García, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071

Gao, M., Yu, Y., Yang, W., Li, J., Xu, S., Feng, M., & Li, H. (2019). Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane. Nanoscale, 11(8), 3506-3513. doi:10.1039/c8nr09005j

Liao, C., Yang, B., Zhang, N., Liu, M., Chen, G., Jiang, X., … Zhou, W. (2019). Constructing Conductive Interfaces between Nickel Oxide Nanocrystals and Polymer Carbon Nitride for Efficient Electrocatalytic Oxygen Evolution Reaction. Advanced Functional Materials, 29(40), 1904020. doi:10.1002/adfm.201904020

Millet, M.-M., Algara-Siller, G., Wrabetz, S., Mazheika, A., Girgsdies, F., Teschner, D., … Frei, E. (2019). Ni Single Atom Catalysts for CO2 Activation. Journal of the American Chemical Society, 141(6), 2451-2461. doi:10.1021/jacs.8b11729

Barrio, J., & Shalom, M. (2018). Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. ChemCatChem, 10(24), 5573-5586. doi:10.1002/cctc.201801410

Shalom, M., Inal, S., Fettkenhauer, C., Neher, D., & Antonietti, M. (2013). Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. Journal of the American Chemical Society, 135(19), 7118-7121. doi:10.1021/ja402521s

Zhang, G., Li, G., & Wang, X. (2015). Surface Modification of Carbon Nitride Polymers by Core-Shell Nickel/Nickel Oxide Cocatalysts for Hydrogen Evolution Photocatalysis. ChemCatChem, 7(18), 2864-2870. doi:10.1002/cctc.201500069

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem