Mostrar el registro sencillo del ítem
dc.contributor.author | CIRUGEDA ROLDAN, EVA MARÍA | es_ES |
dc.contributor.author | Molina Picó, Antonio | es_ES |
dc.contributor.author | Novák, Daniel | es_ES |
dc.contributor.author | Cuesta Frau, David | es_ES |
dc.contributor.author | Kremen,Vaclav | es_ES |
dc.date.accessioned | 2020-10-27T04:32:23Z | |
dc.date.available | 2020-10-27T04:32:23Z | |
dc.date.issued | 2018-06-13 | es_ES |
dc.identifier.issn | 1748-670X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153232 | |
dc.description.abstract | [EN] Most cardiac arrhythmias can be classified as atrial flutter, focal atrial tachycardia, or atrial fibrillation. They have been usually treated using drugs, but catheter ablation has proven more effective. This is an invasive method devised to destroy the heart tissue that disturbs correct heart rhythm. In order to accurately localise the focus of this disturbance, the acquisition and processing of atrial electrograms form the usual mapping technique. They can be single potentials, double potentials, or complex fractionated atrial electrogram (CFAE) potentials, and last ones are the most effective targets for ablation. The electrophysiological substrate is then localised by a suitable signal processing method. Sample Entropy is a statistic scarcely applied to electrograms but can arguably become a powerful tool to analyse these time series, supported by its results in other similar biomedical applications. However, the lack of an analysis of its dependence on the perturbations usually found in electrogram data, such as missing samples or spikes, is even more marked. This paper applied SampEn to the segmentation between non-CFAE and CFAE records and assessed its class segmentation power loss at different levels of these perturbations. The results confirmed that SampEn was able to significantly distinguish between non-CFAE and CFAE records, even under very unfavourable conditions, such as 50% of missing data or 10% of spikes. | es_ES |
dc.description.sponsorship | This research was supported by Research Center for Informatics (no. CZ.02.1.01/0.0/0.0/16-019/0000765). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Limited | es_ES |
dc.relation.ispartof | Computational and Mathematical Methods in Medicine | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2018/1874651 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CVUT//CZ.02.1.01%2F0.0%2F0.0%2F16-019%2F0000765/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica | es_ES |
dc.description.bibliographicCitation | Cirugeda Roldan, EM.; Molina Picó, A.; Novák, D.; Cuesta Frau, D.; Kremen, V. (2018). Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2018/1874651 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1155/2018/1874651 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.identifier.pmid | 30008796 | es_ES |
dc.identifier.pmcid | PMC6020546 | es_ES |
dc.relation.pasarela | S\401351 | es_ES |
dc.contributor.funder | Czech Technical University in Prague | es_ES |
dc.description.references | Ahmed, S., Claughton, A., & Gould, P. A. (2015). Atrial Flutter — Diagnosis, Management and Treatment. Abnormal Heart Rhythms. doi:10.5772/60700 | es_ES |
dc.description.references | Kirchhof, P., & Calkins, H. (2016). Catheter ablation in patients with persistent atrial fibrillation. European Heart Journal, 38(1), 20-26. doi:10.1093/eurheartj/ehw260 | es_ES |
dc.description.references | Nademanee, K., Lockwood, E., Oketani, N., & Gidney, B. (2010). Catheter ablation of atrial fibrillation guided by complex fractionated atrial electrogram mapping of atrial fibrillation substrate. Journal of Cardiology, 55(1), 1-12. doi:10.1016/j.jjcc.2009.11.002 | es_ES |
dc.description.references | NG, J., & GOLDBERGER, J. J. (2007). Understanding and Interpreting Dominant Frequency Analysis of AF Electrograms. Journal of Cardiovascular Electrophysiology, 18(6), 680-685. doi:10.1111/j.1540-8167.2007.00832.x | es_ES |
dc.description.references | Kottkamp, H., & Hindricks, G. (2007). Complex fractionated atrial electrograms in atrial fibrillation: A promising target for ablation, but why, when, and how? Heart Rhythm, 4(8), 1021-1023. doi:10.1016/j.hrthm.2007.05.011 | es_ES |
dc.description.references | Křemen, V., Lhotská, L., Macaš, M., Čihák, R., Vančura, V., Kautzner, J., & Wichterle, D. (2008). A new approach to automated assessment of fractionation of endocardial electrograms during atrial fibrillation. Physiological Measurement, 29(12), 1371-1381. doi:10.1088/0967-3334/29/12/002 | es_ES |
dc.description.references | Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., … Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054 | es_ES |
dc.description.references | Scherr, D., Dalal, D., Cheema, A., Cheng, A., Henrikson, C. A., Spragg, D., … Dong, J. (2007). Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation. Heart Rhythm, 4(8), 1013-1020. doi:10.1016/j.hrthm.2007.04.021 | es_ES |
dc.description.references | Almeida, T. P., Chu, G. S., Salinet, J. L., Vanheusden, F. J., Li, X., Tuan, J. H., … Schlindwein, F. S. (2016). Minimizing discordances in automated classification of fractionated electrograms in human persistent atrial fibrillation. Medical & Biological Engineering & Computing, 54(11), 1695-1706. doi:10.1007/s11517-016-1456-2 | es_ES |
dc.description.references | Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007 | es_ES |
dc.description.references | Cuesta–Frau, D., Miró–Martínez, P., Jordán Núñez, J., Oltra–Crespo, S., & Molina Picó, A. (2017). Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Computers in Biology and Medicine, 87, 141-151. doi:10.1016/j.compbiomed.2017.05.028 | es_ES |
dc.description.references | Demont-Guignard, S., Benquet, P., Gerber, U., & Wendling, F. (2009). Analysis of Intracerebral EEG Recordings of Epileptic Spikes: Insights From a Neural Network Model. IEEE Transactions on Biomedical Engineering, 56(12), 2782-2795. doi:10.1109/tbme.2009.2028015 | es_ES |
dc.description.references | Molina–Picó, A., Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., & Aboy, M. (2013). Influence of QRS complex detection errors on entropy algorithms. Application to heart rate variability discrimination. Computer Methods and Programs in Biomedicine, 110(1), 2-11. doi:10.1016/j.cmpb.2012.10.014 | es_ES |
dc.description.references | Ganesan, P., Cherry, E. M., Pertsov, A. M., & Ghoraani, B. (2015). Characterization of Electrograms from Multipolar Diagnostic Catheters during Atrial Fibrillation. BioMed Research International, 2015, 1-9. doi:10.1155/2015/272954 | es_ES |
dc.description.references | Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797. doi:10.1152/ajpregu.00069.2002 | es_ES |
dc.description.references | Kim, K. K., Baek, H. J., Lim, Y. G., & Park, K. S. (2012). Effect of missing RR-interval data on nonlinear heart rate variability analysis. Computer Methods and Programs in Biomedicine, 106(3), 210-218. doi:10.1016/j.cmpb.2010.11.011 | es_ES |
dc.description.references | Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039 | es_ES |
dc.description.references | Cirugeda–Roldán, E., Novak, D., Kremen, V., Cuesta–Frau, D., Keller, M., Luik, A., & Srutova, M. (2015). Characterization of Complex Fractionated Atrial Electrograms by Sample Entropy: An International Multi-Center Study. Entropy, 17(12), 7493-7509. doi:10.3390/e17117493 | es_ES |
dc.description.references | PORTER, M., SPEAR, W., AKAR, J. G., HELMS, R., BRYSIEWICZ, N., SANTUCCI, P., & WILBER, D. J. (2008). Prospective Study of Atrial Fibrillation Termination During Ablation Guided by Automated Detection of Fractionated Electrograms. Journal of Cardiovascular Electrophysiology, 19(6), 613-620. doi:10.1111/j.1540-8167.2008.01189.x | es_ES |
dc.description.references | Konings, K. T., Kirchhof, C. J., Smeets, J. R., Wellens, H. J., Penn, O. C., & Allessie, M. A. (1994). High-density mapping of electrically induced atrial fibrillation in humans. Circulation, 89(4), 1665-1680. doi:10.1161/01.cir.89.4.1665 | es_ES |
dc.description.references | Fay, M. P., & Proschan, M. A. (2010). Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys, 4(0), 1-39. doi:10.1214/09-ss051 | es_ES |
dc.description.references | Richman, J. S. (2007). Sample Entropy Statistics and Testing for Order in Complex Physiological Signals. Communications in Statistics - Theory and Methods, 36(5), 1005-1019. doi:10.1080/03610920601036481 | es_ES |
dc.description.references | Pincus, S. M., Gladstone, I. M., & Ehrenkranz, R. A. (1991). A regularity statistic for medical data analysis. Journal of Clinical Monitoring, 7(4), 335-345. doi:10.1007/bf01619355 | es_ES |
dc.description.references | Alcaraz, R., & Rieta, J. J. (2009). Non-invasive organization variation assessment in the onset and termination of paroxysmal atrial fibrillation. Computer Methods and Programs in Biomedicine, 93(2), 148-154. doi:10.1016/j.cmpb.2008.09.001 | es_ES |
dc.description.references | Alcaraz, R., Abásolo, D., Hornero, R., & Rieta, J. J. (2010). Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Computer Methods and Programs in Biomedicine, 99(1), 124-132. doi:10.1016/j.cmpb.2010.02.009 | es_ES |
dc.description.references | Costa, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale Entropy Analysis of Complex Physiologic Time Series. Physical Review Letters, 89(6). doi:10.1103/physrevlett.89.068102 | es_ES |