- -

Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author CIRUGEDA ROLDAN, EVA MARÍA es_ES
dc.contributor.author Molina Picó, Antonio es_ES
dc.contributor.author Novák, Daniel es_ES
dc.contributor.author Cuesta Frau, David es_ES
dc.contributor.author Kremen,Vaclav es_ES
dc.date.accessioned 2020-10-27T04:32:23Z
dc.date.available 2020-10-27T04:32:23Z
dc.date.issued 2018-06-13 es_ES
dc.identifier.issn 1748-670X es_ES
dc.identifier.uri http://hdl.handle.net/10251/153232
dc.description.abstract [EN] Most cardiac arrhythmias can be classified as atrial flutter, focal atrial tachycardia, or atrial fibrillation. They have been usually treated using drugs, but catheter ablation has proven more effective. This is an invasive method devised to destroy the heart tissue that disturbs correct heart rhythm. In order to accurately localise the focus of this disturbance, the acquisition and processing of atrial electrograms form the usual mapping technique. They can be single potentials, double potentials, or complex fractionated atrial electrogram (CFAE) potentials, and last ones are the most effective targets for ablation. The electrophysiological substrate is then localised by a suitable signal processing method. Sample Entropy is a statistic scarcely applied to electrograms but can arguably become a powerful tool to analyse these time series, supported by its results in other similar biomedical applications. However, the lack of an analysis of its dependence on the perturbations usually found in electrogram data, such as missing samples or spikes, is even more marked. This paper applied SampEn to the segmentation between non-CFAE and CFAE records and assessed its class segmentation power loss at different levels of these perturbations. The results confirmed that SampEn was able to significantly distinguish between non-CFAE and CFAE records, even under very unfavourable conditions, such as 50% of missing data or 10% of spikes. es_ES
dc.description.sponsorship This research was supported by Research Center for Informatics (no. CZ.02.1.01/0.0/0.0/16-019/0000765). es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Limited es_ES
dc.relation.ispartof Computational and Mathematical Methods in Medicine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2018/1874651 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CVUT//CZ.02.1.01%2F0.0%2F0.0%2F16-019%2F0000765/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica es_ES
dc.description.bibliographicCitation Cirugeda Roldan, EM.; Molina Picó, A.; Novák, D.; Cuesta Frau, D.; Kremen, V. (2018). Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2018/1874651 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2018/1874651 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.identifier.pmid 30008796 es_ES
dc.identifier.pmcid PMC6020546 es_ES
dc.relation.pasarela S\401351 es_ES
dc.contributor.funder Czech Technical University in Prague es_ES
dc.description.references Ahmed, S., Claughton, A., & Gould, P. A. (2015). Atrial Flutter — Diagnosis, Management and Treatment. Abnormal Heart Rhythms. doi:10.5772/60700 es_ES
dc.description.references Kirchhof, P., & Calkins, H. (2016). Catheter ablation in patients with persistent atrial fibrillation. European Heart Journal, 38(1), 20-26. doi:10.1093/eurheartj/ehw260 es_ES
dc.description.references Nademanee, K., Lockwood, E., Oketani, N., & Gidney, B. (2010). Catheter ablation of atrial fibrillation guided by complex fractionated atrial electrogram mapping of atrial fibrillation substrate. Journal of Cardiology, 55(1), 1-12. doi:10.1016/j.jjcc.2009.11.002 es_ES
dc.description.references NG, J., & GOLDBERGER, J. J. (2007). Understanding and Interpreting Dominant Frequency Analysis of AF Electrograms. Journal of Cardiovascular Electrophysiology, 18(6), 680-685. doi:10.1111/j.1540-8167.2007.00832.x es_ES
dc.description.references Kottkamp, H., & Hindricks, G. (2007). Complex fractionated atrial electrograms in atrial fibrillation: A promising target for ablation, but why, when, and how? Heart Rhythm, 4(8), 1021-1023. doi:10.1016/j.hrthm.2007.05.011 es_ES
dc.description.references Křemen, V., Lhotská, L., Macaš, M., Čihák, R., Vančura, V., Kautzner, J., & Wichterle, D. (2008). A new approach to automated assessment of fractionation of endocardial electrograms during atrial fibrillation. Physiological Measurement, 29(12), 1371-1381. doi:10.1088/0967-3334/29/12/002 es_ES
dc.description.references Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., … Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054 es_ES
dc.description.references Scherr, D., Dalal, D., Cheema, A., Cheng, A., Henrikson, C. A., Spragg, D., … Dong, J. (2007). Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation. Heart Rhythm, 4(8), 1013-1020. doi:10.1016/j.hrthm.2007.04.021 es_ES
dc.description.references Almeida, T. P., Chu, G. S., Salinet, J. L., Vanheusden, F. J., Li, X., Tuan, J. H., … Schlindwein, F. S. (2016). Minimizing discordances in automated classification of fractionated electrograms in human persistent atrial fibrillation. Medical & Biological Engineering & Computing, 54(11), 1695-1706. doi:10.1007/s11517-016-1456-2 es_ES
dc.description.references Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007 es_ES
dc.description.references Cuesta–Frau, D., Miró–Martínez, P., Jordán Núñez, J., Oltra–Crespo, S., & Molina Picó, A. (2017). Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Computers in Biology and Medicine, 87, 141-151. doi:10.1016/j.compbiomed.2017.05.028 es_ES
dc.description.references Demont-Guignard, S., Benquet, P., Gerber, U., & Wendling, F. (2009). Analysis of Intracerebral EEG Recordings of Epileptic Spikes: Insights From a Neural Network Model. IEEE Transactions on Biomedical Engineering, 56(12), 2782-2795. doi:10.1109/tbme.2009.2028015 es_ES
dc.description.references Molina–Picó, A., Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., & Aboy, M. (2013). Influence of QRS complex detection errors on entropy algorithms. Application to heart rate variability discrimination. Computer Methods and Programs in Biomedicine, 110(1), 2-11. doi:10.1016/j.cmpb.2012.10.014 es_ES
dc.description.references Ganesan, P., Cherry, E. M., Pertsov, A. M., & Ghoraani, B. (2015). Characterization of Electrograms from Multipolar Diagnostic Catheters during Atrial Fibrillation. BioMed Research International, 2015, 1-9. doi:10.1155/2015/272954 es_ES
dc.description.references Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797. doi:10.1152/ajpregu.00069.2002 es_ES
dc.description.references Kim, K. K., Baek, H. J., Lim, Y. G., & Park, K. S. (2012). Effect of missing RR-interval data on nonlinear heart rate variability analysis. Computer Methods and Programs in Biomedicine, 106(3), 210-218. doi:10.1016/j.cmpb.2010.11.011 es_ES
dc.description.references Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039 es_ES
dc.description.references Cirugeda–Roldán, E., Novak, D., Kremen, V., Cuesta–Frau, D., Keller, M., Luik, A., & Srutova, M. (2015). Characterization of Complex Fractionated Atrial Electrograms by Sample Entropy: An International Multi-Center Study. Entropy, 17(12), 7493-7509. doi:10.3390/e17117493 es_ES
dc.description.references PORTER, M., SPEAR, W., AKAR, J. G., HELMS, R., BRYSIEWICZ, N., SANTUCCI, P., & WILBER, D. J. (2008). Prospective Study of Atrial Fibrillation Termination During Ablation Guided by Automated Detection of Fractionated Electrograms. Journal of Cardiovascular Electrophysiology, 19(6), 613-620. doi:10.1111/j.1540-8167.2008.01189.x es_ES
dc.description.references Konings, K. T., Kirchhof, C. J., Smeets, J. R., Wellens, H. J., Penn, O. C., & Allessie, M. A. (1994). High-density mapping of electrically induced atrial fibrillation in humans. Circulation, 89(4), 1665-1680. doi:10.1161/01.cir.89.4.1665 es_ES
dc.description.references Fay, M. P., & Proschan, M. A. (2010). Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys, 4(0), 1-39. doi:10.1214/09-ss051 es_ES
dc.description.references Richman, J. S. (2007). Sample Entropy Statistics and Testing for Order in Complex Physiological Signals. Communications in Statistics - Theory and Methods, 36(5), 1005-1019. doi:10.1080/03610920601036481 es_ES
dc.description.references Pincus, S. M., Gladstone, I. M., & Ehrenkranz, R. A. (1991). A regularity statistic for medical data analysis. Journal of Clinical Monitoring, 7(4), 335-345. doi:10.1007/bf01619355 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2009). Non-invasive organization variation assessment in the onset and termination of paroxysmal atrial fibrillation. Computer Methods and Programs in Biomedicine, 93(2), 148-154. doi:10.1016/j.cmpb.2008.09.001 es_ES
dc.description.references Alcaraz, R., Abásolo, D., Hornero, R., & Rieta, J. J. (2010). Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Computer Methods and Programs in Biomedicine, 99(1), 124-132. doi:10.1016/j.cmpb.2010.02.009 es_ES
dc.description.references Costa, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale Entropy Analysis of Complex Physiologic Time Series. Physical Review Letters, 89(6). doi:10.1103/physrevlett.89.068102 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem