- -

Automatic segmentation of the spine by means of a probabilistic atlas with a special focus on ribs suppression

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic segmentation of the spine by means of a probabilistic atlas with a special focus on ribs suppression

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz-España, Silvia es_ES
dc.contributor.author Domingo, Juan es_ES
dc.contributor.author Díaz-Parra, Antonio es_ES
dc.contributor.author Dura, Esther es_ES
dc.contributor.author D'Ocon-Alcaniz, Victor es_ES
dc.contributor.author Arana, Estanislao es_ES
dc.contributor.author Moratal, David es_ES
dc.date.accessioned 2020-10-27T04:32:29Z
dc.date.available 2020-10-27T04:32:29Z
dc.date.issued 2017-09 es_ES
dc.identifier.issn 0094-2405 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153235
dc.description.abstract [EN] Purpose: The development of automatic and reliable algorithms for the detection and segmentation of the vertebrae are of great importance prior to any diagnostic task. However, an important problem found to accurately segment the vertebrae is the presence of the ribs in the thoracic region. To overcome this problem, a probabilistic atlas of the spine has been developed dealing with the proximity of other structures, with a special focus on ribs suppression. Methods: The data sets used consist of Computed Tomography images corresponding to 21 patients suffering from spinal metastases. Two methods have been combined to obtain the final result: firstly, an initial segmentation is performed using a fully automatic level-set method; secondly, to refine the initial segmentation, a 3D volume indicating the probability of each voxel of belonging to the spine has been developed. In this way, a probability map is generated and deformed to be adapted to each testing case. Results: To validate the improvement obtained after applying the atlas, the Dice coefficient (DSC), the Hausdorff distance (HD), and the mean surface-to-surface distance (MSD) were used. The results showed up an average of 10 mm of improvement accuracy in terms of HD, obtaining an overall final average of 15.51 2.74 mm. Also, a global value of 91.01 3.18% in terms of DSC and a MSD of 0.66 0.25 mm were obtained. The major improvement using the atlas was achieved in the thoracic region, as ribs were almost perfectly suppressed. Conclusion: The study demonstrated that the atlas is able to detect and appropriately eliminate the ribs while improving the segmentation accuracy. es_ES
dc.description.sponsorship The authors thank the financial support of the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under Grants TEC2012-33778 and BFU2015-64380-C2-2-R (D.M.) and DPI2013-4572-R (J.D., E.D.) es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Medical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computed tomography es_ES
dc.subject Probabilistic atlas es_ES
dc.subject Ribs suppression es_ES
dc.subject Vertebral segmentation es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Automatic segmentation of the spine by means of a probabilistic atlas with a special focus on ribs suppression es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mp.12431 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-45742-R/ES/DESARROLLO Y VALIDACION DE UN MODELO FARMACOCINETICO BASADO EN CORREGISTRO MAS SEGMENTACION PRECISAS DE IMAGENES 4D DE RESONANCIA MAGNETICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2012-33778/ES/CARACTERIZACION CUANTITATIVA DE LA METASTASIS VERTEBRAL MEDIANTE ANALISIS DE IMAGEN DE TC Y MODELADO POR ELEMENTOS FINITOS PARA LA DETERMINACION DEL RIESGO DE FRACTURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Ruiz-España, S.; Domingo, J.; Díaz-Parra, A.; Dura, E.; D'ocon-Alcaniz, V.; Arana, E.; Moratal, D. (2017). Automatic segmentation of the spine by means of a probabilistic atlas with a special focus on ribs suppression. Medical Physics. 44(9):4695-4707. https://doi.org/10.1002/mp.12431 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mp.12431 es_ES
dc.description.upvformatpinicio 4695 es_ES
dc.description.upvformatpfin 4707 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 28650514 es_ES
dc.relation.pasarela S\352904 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Harris, R. I., & Macnab, I. (1954). STRUCTURAL CHANGES IN THE LUMBAR INTERVERTEBRAL DISCS. The Journal of Bone and Joint Surgery. British volume, 36-B(2), 304-322. doi:10.1302/0301-620x.36b2.304 es_ES
dc.description.references Oliveira, M. F. de, Rotta, J. M., & Botelho, R. V. (2015). Survival analysis in patients with metastatic spinal disease: the influence of surgery, histology, clinical and neurologic status. Arquivos de Neuro-Psiquiatria, 73(4), 330-335. doi:10.1590/0004-282x20150003 es_ES
dc.description.references Chou, R. (2011). Diagnostic Imaging for Low Back Pain: Advice for High-Value Health Care From the American College of Physicians. Annals of Internal Medicine, 154(3), 181. doi:10.7326/0003-4819-154-3-201102010-00008 es_ES
dc.description.references Brayda-Bruno, M., Tibiletti, M., Ito, K., Fairbank, J., Galbusera, F., Zerbi, A., … Sivan, S. S. (2013). Advances in the diagnosis of degenerated lumbar discs and their possible clinical application. European Spine Journal, 23(S3), 315-323. doi:10.1007/s00586-013-2960-9 es_ES
dc.description.references Quattrocchi, C. C., Santini, D., Dell’Aia, P., Piciucchi, S., Leoncini, E., Vincenzi, B., … Zobel, B. B. (2007). A prospective analysis of CT density measurements of bone metastases after treatment with zoledronic acid. Skeletal Radiology, 36(12), 1121-1127. doi:10.1007/s00256-007-0388-1 es_ES
dc.description.references Doi, K. (2007). Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Computerized Medical Imaging and Graphics, 31(4-5), 198-211. doi:10.1016/j.compmedimag.2007.02.002 es_ES
dc.description.references Ruiz-España, S., Arana, E., & Moratal, D. (2015). Semiautomatic computer-aided classification of degenerative lumbar spine disease in magnetic resonance imaging. Computers in Biology and Medicine, 62, 196-205. doi:10.1016/j.compbiomed.2015.04.028 es_ES
dc.description.references Alomari, R. S., Ghosh, S., Koh, J., & Chaudhary, V. (2014). Vertebral Column Localization, Labeling, and Segmentation. Lecture Notes in Computational Vision and Biomechanics, 193-229. doi:10.1007/978-3-319-12508-4_7 es_ES
dc.description.references Hamarneh, G., & Li, X. (2009). Watershed segmentation using prior shape and appearance knowledge. Image and Vision Computing, 27(1-2), 59-68. doi:10.1016/j.imavis.2006.10.009 es_ES
dc.description.references Ghebreab, S., & Smeulders, A. W. (2004). Combining Strings and Necklaces for Interactive Three-Dimensional Segmentation of Spinal Images Using an Integral Deformable Spine Model. IEEE Transactions on Biomedical Engineering, 51(10), 1821-1829. doi:10.1109/tbme.2004.831540 es_ES
dc.description.references Mastmeyer, A., Engelke, K., Fuchs, C., & Kalender, W. A. (2006). A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Medical Image Analysis, 10(4), 560-577. doi:10.1016/j.media.2006.05.005 es_ES
dc.description.references Rasoulian, A., Rohling, R., & Abolmaesumi, P. (2013). Lumbar Spine Segmentation Using a Statistical Multi-Vertebrae Anatomical Shape+Pose Model. IEEE Transactions on Medical Imaging, 32(10), 1890-1900. doi:10.1109/tmi.2013.2268424 es_ES
dc.description.references Ma, J., & Lu, L. (2013). Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Computer Vision and Image Understanding, 117(9), 1072-1083. doi:10.1016/j.cviu.2012.11.016 es_ES
dc.description.references Kim, Y., & Kim, D. (2009). A fully automatic vertebra segmentation method using 3D deformable fences. Computerized Medical Imaging and Graphics, 33(5), 343-352. doi:10.1016/j.compmedimag.2009.02.006 es_ES
dc.description.references Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., & Lorenz, C. (2009). Automated model-based vertebra detection, identification, and segmentation in CT images. Medical Image Analysis, 13(3), 471-482. doi:10.1016/j.media.2009.02.004 es_ES
dc.description.references Štern, D., Likar, B., Pernuš, F., & Vrtovec, T. (2011). Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Physics in Medicine and Biology, 56(23), 7505-7522. doi:10.1088/0031-9155/56/23/011 es_ES
dc.description.references Korez, R., Ibragimov, B., Likar, B., Pernus, F., & Vrtovec, T. (2015). A Framework for Automated Spine and Vertebrae Interpolation-Based Detection and Model-Based Segmentation. IEEE Transactions on Medical Imaging, 34(8), 1649-1662. doi:10.1109/tmi.2015.2389334 es_ES
dc.description.references Castro-Mateos, I., Pozo, J. M., Pereanez, M., Lekadir, K., Lazary, A., & Frangi, A. F. (2015). Statistical Interspace Models (SIMs): Application to Robust 3D Spine Segmentation. IEEE Transactions on Medical Imaging, 34(8), 1663-1675. doi:10.1109/tmi.2015.2443912 es_ES
dc.description.references Pereanez, M., Lekadir, K., Castro-Mateos, I., Pozo, J. M., Lazary, A., & Frangi, A. F. (2015). Accurate Segmentation of Vertebral Bodies and Processes Using Statistical Shape Decomposition and Conditional Models. IEEE Transactions on Medical Imaging, 34(8), 1627-1639. doi:10.1109/tmi.2015.2396774 es_ES
dc.description.references Michael Kelm, B., Wels, M., Kevin Zhou, S., Seifert, S., Suehling, M., Zheng, Y., & Comaniciu, D. (2013). Spine detection in CT and MR using iterated marginal space learning. Medical Image Analysis, 17(8), 1283-1292. doi:10.1016/j.media.2012.09.007 es_ES
dc.description.references Yan Kang, Engelke, K., & Kalender, W. A. (2003). A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Transactions on Medical Imaging, 22(5), 586-598. doi:10.1109/tmi.2003.812265 es_ES
dc.description.references Huang, J., Jian, F., Wu, H., & Li, H. (2013). An improved level set method for vertebra CT image segmentation. BioMedical Engineering OnLine, 12(1), 48. doi:10.1186/1475-925x-12-48 es_ES
dc.description.references Lim, P. H., Bagci, U., & Bai, L. (2013). Introducing Willmore Flow Into Level Set Segmentation of Spinal Vertebrae. IEEE Transactions on Biomedical Engineering, 60(1), 115-122. doi:10.1109/tbme.2012.2225833 es_ES
dc.description.references Forsberg, D., Lundström, C., Andersson, M., & Knutsson, H. (2013). Model-based registration for assessment of spinal deformities in idiopathic scoliosis. Physics in Medicine and Biology, 59(2), 311-326. doi:10.1088/0031-9155/59/2/311 es_ES
dc.description.references Yao, J., Burns, J. E., Forsberg, D., Seitel, A., Rasoulian, A., Abolmaesumi, P., … Li, S. (2016). A multi-center milestone study of clinical vertebral CT segmentation. Computerized Medical Imaging and Graphics, 49, 16-28. doi:10.1016/j.compmedimag.2015.12.006 es_ES
dc.description.references Shi, C., Wang, J., & Cheng, Y. (2015). Sparse Representation-Based Deformation Model for Atlas-Based Segmentation of Liver CT Images. Image and Graphics, 410-419. doi:10.1007/978-3-319-21969-1_36 es_ES
dc.description.references Domingo, J., Dura, E., Ayala, G., & Ruiz-España, S. (2015). Means of 2D and 3D Shapes and Their Application in Anatomical Atlas Building. Lecture Notes in Computer Science, 522-533. doi:10.1007/978-3-319-23192-1_44 es_ES
dc.description.references Hyunjin Park, Bland, P. H., & Meyer, C. R. (2003). Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Transactions on Medical Imaging, 22(4), 483-492. doi:10.1109/tmi.2003.809139 es_ES
dc.description.references Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., & Bach Cuadra, M. (2011). A review of atlas-based segmentation for magnetic resonance brain images. Computer Methods and Programs in Biomedicine, 104(3), e158-e177. doi:10.1016/j.cmpb.2011.07.015 es_ES
dc.description.references Fortunati, V., Verhaart, R. F., van der Lijn, F., Niessen, W. J., Veenland, J. F., Paulides, M. M., & van Walsum, T. (2013). Tissue segmentation of head and neck CT images for treatment planning: A multiatlas approach combined with intensity modeling. Medical Physics, 40(7), 071905. doi:10.1118/1.4810971 es_ES
dc.description.references Zhuang, X., Bai, W., Song, J., Zhan, S., Qian, X., Shi, W., … Rueckert, D. (2015). Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection. Medical Physics, 42(7), 3822-3833. doi:10.1118/1.4921366 es_ES
dc.description.references Zhou, J., Yan, Z., Lasio, G., Huang, J., Zhang, B., Sharma, N., … D’Souza, W. (2015). Automated compromised right lung segmentation method using a robust atlas-based active volume model with sparse shape composition prior in CT. Computerized Medical Imaging and Graphics, 46, 47-55. doi:10.1016/j.compmedimag.2015.07.003 es_ES
dc.description.references Linguraru, M. G., Sandberg, J. K., Li, Z., Shah, F., & Summers, R. M. (2010). Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation. Medical Physics, 37(2), 771-783. doi:10.1118/1.3284530 es_ES
dc.description.references Xu, Y., Xu, C., Kuang, X., Wang, H., Chang, E. I.-C., Huang, W., & Fan, Y. (2016). 3D-SIFT-Flow for atlas-based CT liver image segmentation. Medical Physics, 43(5), 2229-2241. doi:10.1118/1.4945021 es_ES
dc.description.references Michopoulou, S. K., Costaridou, L., Panagiotopoulos, E., Speller, R., Panayiotakis, G., & Todd-Pokropek, A. (2009). Atlas-Based Segmentation of Degenerated Lumbar Intervertebral Discs From MR Images of the Spine. IEEE Transactions on Biomedical Engineering, 56(9), 2225-2231. doi:10.1109/tbme.2009.2019765 es_ES
dc.description.references Taso, M., Le Troter, A., Sdika, M., Ranjeva, J.-P., Guye, M., Bernard, M., & Callot, V. (2013). Construction of an in vivo human spinal cord atlas based on high-resolution MR images at cervical and thoracic levels: preliminary results. Magnetic Resonance Materials in Physics, Biology and Medicine, 27(3), 257-267. doi:10.1007/s10334-013-0403-6 es_ES
dc.description.references Lévy, S., Benhamou, M., Naaman, C., Rainville, P., Callot, V., & Cohen-Adad, J. (2015). White matter atlas of the human spinal cord with estimation of partial volume effect. NeuroImage, 119, 262-271. doi:10.1016/j.neuroimage.2015.06.040 es_ES
dc.description.references Hardisty, M., Gordon, L., Agarwal, P., Skrinskas, T., & Whyne, C. (2007). Quantitative characterization of metastatic disease in the spine. Part I. Semiautomated segmentation using atlas-based deformable registration and the level set method. Medical Physics, 34(8), 3127-3134. doi:10.1118/1.2746498 es_ES
dc.description.references Forsberg, D. (2015). Atlas-Based Registration for Accurate Segmentation of Thoracic and Lumbar Vertebrae in CT Data. Lecture Notes in Computational Vision and Biomechanics, 49-59. doi:10.1007/978-3-319-14148-0_5 es_ES
dc.description.references Ibañez MV Schroeder W Cates L Insight software Consortium. The ITK Software Guide 2016 http://www.itk.org/ItkSoftwareGuide.pdf es_ES
dc.description.references Loader C R package: Local regression, likelihood and density estimation. CRAN repository 2013 2016 http://cran.r-project.org/web/packages/locfit es_ES
dc.description.references PARK, H., HERO, A., BLAND, P., KESSLER, M., SEO, J., & MEYER, C. (2010). Construction of Abdominal Probabilistic Atlases and Their Value in Segmentation of Normal Organs in Abdominal CT Scans. IEICE Transactions on Information and Systems, E93-D(8), 2291-2301. doi:10.1587/transinf.e93.d.2291 es_ES
dc.description.references Pohl, K. M., Fisher, J., Bouix, S., Shenton, M., McCarley, R. W., Grimson, W. E. L., … Wells, W. M. (2007). Using the logarithm of odds to define a vector space on probabilistic atlases. Medical Image Analysis, 11(5), 465-477. doi:10.1016/j.media.2007.06.003 es_ES
dc.description.references Baddeley, A., & Molchanov, I. (1998). Journal of Mathematical Imaging and Vision, 8(1), 79-92. doi:10.1023/a:1008214317492 es_ES
dc.description.references De Bruijne, M., van Ginneken, B., Viergever, M. A., & Niessen, W. J. (2003). Adapting Active Shape Models for 3D Segmentation of Tubular Structures in Medical Images. Information Processing in Medical Imaging, 136-147. doi:10.1007/978-3-540-45087-0_12 es_ES
dc.description.references Zhang, K., Zhang, L., Song, H., & Zhou, W. (2010). Active contours with selective local or global segmentation: A new formulation and level set method. Image and Vision Computing, 28(4), 668-676. doi:10.1016/j.imavis.2009.10.009 es_ES
dc.description.references Kalpathy-Cramer, J., Awan, M., Bedrick, S., Rasch, C. R. N., Rosenthal, D. I., & Fuller, C. D. (2013). Development of a Software for Quantitative Evaluation Radiotherapy Target and Organ-at-Risk Segmentation Comparison. Journal of Digital Imaging, 27(1), 108-119. doi:10.1007/s10278-013-9633-4 es_ES
dc.description.references Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850-863. doi:10.1109/34.232073 es_ES
dc.description.references Aspert, N., Santa-Cruz, D., & Ebrahimi, T. (s. f.). MESH: measuring errors between surfaces using the Hausdorff distance. Proceedings. IEEE International Conference on Multimedia and Expo. doi:10.1109/icme.2002.1035879 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem